|IEC disected

This document describes the IEC-bus informatiohey@d during the development of the 1541-III.

J. Derogee Page 1 2008-02-24

General info:

The serial (IEC) bus uses a synchronous protod¢wré are three lines: DATA, CLK, and -ATN.
The lines are driven by a 6526 CIA on the C-64ouigh open-collector inverters (7406's); 1 kohm
pull-up resistors are used. The 1541 and 157 ks the same, but they don't drive the -ATN
line, and they use 6522 VIA's. The lines are alsalréirectly by the C-64. Address $DDO00 (PA of
CIA2) is used by the C-64. Bit 3is ATN OUT, biis-CLK OUT, bit 5 is -DATA OUT, bit 6 is
CLK IN, and bit 7 is DATA IN.

A device's identity is usually stored in RAM afterdb up, so a drive POKE will let it change to
anything in the range 0-30. The C64 kernal (untedshed) prevents 0-3 from actually going down
the serial bus....

CBM Device ID’s

Device ID

Device type

Keyboard

Cassette port

RS232 on user port or second cassette on oldtsr un

Screen

Printer

Printer

Typically plotter device

NoOg|~WIN|FL O

Second plotter?
Also used by a freeze cartridges named TurboTagehhbt's only an internal definitig

8 Primary Disk Drive
9 Disk Drive
10 Disk Drive
Also used by some serial-to-parallel printer irded cartridges
11 Disk Drive
12 Disk Drive
13 Disk Drive
14 Disk Drive
Sometimes used by some serial-to-parallel primgriace cartridges
15 Disk Drive
16-30 Unknown
31 Device #31 is reserved as a command to all dsvic

Devices willnot ignore a command to #31, since they cannot do $einding a TALK command to #31 means UNTALK, send
LISTEN to #31 means UNLISTEN. This however is justaeshent found on the web and has not been verifiedth®r sources.

J. Derogee Page 2 2008-02-24

n

Regarding the signals on the bus:
0V = TRUE or PULLED DOWN
5V = FALSE or RELEASED

Regarding the data on the bus:

ov
SV

=logical 0
= logical 1

Bytes are sent with low bit first.
Data is valid on rising edge of clock

CBM Serial Bus Control Codes

Base address | Command name and details

20 LISTEN + device number (0-30)

3F UNLISTEN

40 TALK + device number (0-30)

5F UNTALK

60 OPEN CHANNEL / DATA + Secondary Address /chal (0-15)

EOQ CLOSE + Secondary Address / channel (0-15)
FO OPEN + Secondary Address / channel (0-15)
/ = byte is send under attention (ATN low)

1 = bus turn around (computer is set to slave)

! = bus turn around (computer is set to master (absituation)

Note: the device (1541) is called by the compu@&4()

J. Derogee Page 3

2008-02-24

This article appeared in Compute! July 1983 and is Copyrighted 1983 by Jim Butterfield.

HOW THE VIC/64 SERIAL BUS WORKS
By Jim Butterfield

The Serial bus connects VIC or Commodore 64 tonggor peripherals, especially disk and tape.
The workings of this interface have been a soufdeatflement to most of us. We know that it's
somehow related to the IEEE-488 bus which is useBET and CBM computers. But it has fewer
wires, and it's slower. For anyone interested terfacing details, this article will clear up the
mystery.

GROUND RULES

To understand the workings of this bus, you mustkwbrough a few concepts. Later, we'll get

technical for this who want it. The bus, like tiiEE, has two modes of operation: Select mode, in
which the computer calls all devices and asks fepecific device to remain connected after the
call ("Jones, would you stay in my office after theeeting?"); and Data mode, in which actual

information is transmitted ("Jones, I've decidedjitee you a raise”). Select mode is invoked by
the use of a special control line called "Attenfioor ATN. By using Select mode, you can call in

any device you choose, but you may need to do fefere you transmit data. You might have

several disk files in progress - writing some aedding others — and when you select the disk,
device 8, you'll still need to specify which "padf the disk you want to reach: subchannel 3,
subchannel 15, or whatever. To do this, we useeadhdary address" which usually signals a
subsystem within a specific device. That goessrpart of the command during Select mode.
Finally, we may need to send other control infoioratthe name of the file we wish to open, for

example. That's not data; it's device setup infomnatso we also send it in Select mode. But the
main part is: you select a device, and then yod seiit or receive from it. Finally, you shut itfo

All devices are connected, but only the one yowehselected will listen or talk.

If you're not into volts and signals and things, test of this article may not do much for you. |

want to talk about technical aspects of the bust,Fall the data flows over two wires; They are
called the Clock line and the Data line. There @tleer wires used for control purposes, but the
data uses only the two main ones. All wires conteelll devices. The wires don't go "one way";

any device can put a ground on a signal line, dndtlaer devices will see it. Indeed, that's the
secret of how it works: each wire serves as a comsignal bus.

When no device puts a ground on a signal lineytiege rises to almost five volts. We call this
the "false" logic condition of the wire. If any\dee rounds the line, the voltage drops to zero; we
call this the "true" condition of the line. Notkat if two devices signal "true” on a line (by
grounding it), the effect is exactly the same amify one has done so: the voltage is zero antsthat
that. We can summarize this as an important sietgid rules:

-A line will become "true" (PULLED DOWN, or OM) one or more devices signal true;
-A line will become "false” (RELEASED, or 5Vhty if all devices signal false.

Remember that we have several lines, but the impbdnes for information transmission are the
Clock line and the Data line. Let's watch them work

J. Derogee Page 4 2008-02-24

TRANSMISSION: STEP ZERO

Let's look at the sequence when a character is abdug transmitted. At this time, both the Clock
line and the Data line are being held down to the ttate. With a test instrument, you can't tell
who's doing it, but I'll tell you: the talker is hadd the Clock line true, and the listener is hotdin
the Data line true. There could be more than @sterler, in which case all of the listeners are
holding the Data line true. Each of the signalghhbe viewed as saying, "I'm here!".

STEP 1: READY TO SEND

Sooner or later, the talker will want to talk, essehd a character. When it's ready to go, it refease
the Clock line to false. This signal change migéattranslated as "I'm ready to send a character.”
The listener must detect this and respond, budesd't have to do so immediately. The listener will
respond to the talker's "ready to send" signal wheng likes; it can wait a long time. If it's a
printer chugging out a line of print, or a diskwdriwith a formatting job in progress, it might hold
back for quite a while; there's no time limit.

STEP 2: READY FOR DATA

When the listener is ready to listen, it releases@ata line to false. Suppose there is more than
one listener. The Data line will go false only whedl listeners have released it - in other words,
when all listeners are ready to accept data. Whppéns next is variable. Either the talker will
pull the Clock line back to true in less than 20@roseconds - usually within 60 microseconds - or
it will do nothing. The listener should be watdirand if 200 microseconds pass without the
Clock line going to true, it has a special taskéoform: note EOI.

INTERMISSION: EOI

If the Ready for Data signal isn't acknowledgedhmsy talker within 200 microseconds, the listener
knows that the talker is trying to signal EOl. E@hich formally stands for "End of Indicator,”
means "this character will be the last one.” '# & sequential disk file, don't ask for more: there
will be no more. If it's a relative record, thatie tend of the record. The character itself will st
be coming, but the listener should note: here caimesast character. So if the listener sees tige 20
microsecond time-out, it must signal "OK, | noticéd EOI" back to the talker, | does this by
pulling the Data line true for at least 60 micrasets, and then releasing it. The talker will then
revert to transmitting the character in the usuayywithin 60 microseconds it will pull the Clock
line true, and transmission will continue. At tluesint, the Clock line is true whether or not we
have gone through the EOI sequence; we're backdmanon transmission sequence.

STEP 3: SENDING THE BITS

The talker has eight bits to send. They will go without handshake; in other words, the listener
had better be there to catch them, since the talkait wait to hear from the listener. At this poin
the talker controls both lines, Clock and Data. thé beginning of the sequence, it is holding the
Clock true, while the Data line is released todalshe Data line will change soon, since we'll send
the data over it. The eights bits will go out frtime character one at a time, with

the least significant bit going first. For exampfehe character is the ASCII question mark, whic

is written in binary as 00011111, the ones willa@d first, followed by the zeros. Now, for each
bit, we set the Data line true or false accordmgvhether the bit is one or zero. As soon as that's
set, the Clock line is released to false, signgllidata ready.” The talker will typically have & b

in place and be signalling ready in 70 microsecamdiess. Once the talker has signalled "data
ready,"” it will hold the two lines steady for aast 20 microseconds timing needs to be increased to

J. Derogee Page 5 2008-02-24

60 microseconds if the Commodore 64 is listeningces the 64's video chip may interrupt the
processor for 42 microseconds at a time, and wittimiextra wait the 64 might completely miss a
bit. The listener plays a passive role here; ilsamthing, and just watches. As soon as it deest
Clock line false, it grabs the bit from the Dataeliand puts it away. It then waits for the cldoke |

to go true, in order to prepare for the next bitaf the talker figures the data has been held for a
sufficient length of time, it pulls the Clock liteue and releases the Data line to false. Then it
starts to prepare the next bit.

STEP 4: FRAME HANDSHAKE

After the eighth bit has been sent, it's the listsrtern to acknowledge. At this moment, the Clock
line is true and the Data line is false. The fistemust acknowledge receiving the byte OK by
pulling the Data line to true. The talker is nowtgbang the Data line. If the listener doesn't pull
the Data line true within one millisecond - one ukand microseconds - it will know that

something's wrong and may alarm appropriately.

STEP 5: START OVER

We're finished, and back where we started. Thietak holding the Clock line true, and the
listener is holding the Data line true. We're refadystep 1; we may send another character - unless
EOI has happened. If EOI was sent or receivedigldist transmission, both talker and listener "let
go." After a suitable pause, the Clock and Datediare released to false and transmission stops.

REPEAT
FOR
EACH
BIT

o

i

DATA
LINE
T
e
T
asﬁf

]

Erﬂﬁ- :

Z 1 |

e —a— : s e -
4 o . p.p 2B 2F B PR3 ic 4 35
= 45 "'\@ﬁ . >E2 o ‘E? i ™ ’68'553?.2‘ U'Et.t’ S = &
ts. 3. ¥Eis §5E, OQI3SEF Px, 3%3i3zg: =258 3§ IFo% o
fovdd o PFEE NQE £ 2 = T§ mPEAuElaB 5y = :g- ol
EFETE €%3- £°F2 E=cRELE S3F THoi=i 30 RRY is q*gé #
Eisp: ¢ gﬂ ? PR IFEESTE 9By Zu-§ERNTEycd 2T 3c:el O
R3S 2 30 ¢ 3° Ee33gRs oEC gaca ianaast of 24N o
t% & e% o $ 2 : i g & &

ATTENTIONI!

This is all very well for a transmission that's unday, but how do we set up talker and listener?
We use an extra line that overrides everything, elated the ATN, or Attention line. Normally,
the computer is the only device that will pull ATtNie. When it does so, all other devices drop
what they are doing and become listeners. Sigealsks/ the computer during an ATN period look
like ordinary characters - eight bits with the Ushandshake - but they are not data. They are
"Talk," "Listen," "Untalk,” and "Unlisten” commandslling a specific device that it will become
(or cease to be) a talker or listener. The commaudto all devices, and all devices acknowledge
them, but only the ones with the suitable devicenloers will switch into talk and listen mode.
These commands are sometimes followed by a secpratftiress, and after ATN is released,
perhaps by a file name. An example might help ginddea of the nature of the communications

J. Derogee Page 6 2008-02-24

that take place. To open for writing a sequerdiak file called "XX," the following sequence
would be sent with ATN on:DEVICE-8-LISTEN;SECONDARADDRESS-2-OPEN. When
ATN switches off, the computer will be waiting adadker, holding the Clock line true; and the
disk will be the listener, holding the Data linadr That's good, because the computer has more to
send, and it will transmit: X;X;comma;s;comma;WhetW will be accompanied with an EOI
signal. Shortly thereafter, the computer will ®kitATN back on and send DEVICE-8-
UNLISTEN. The file is now open; later, the computell want to send data there. It will transmit,
with ATN on, DEVICE-8-LISTEN;SECONDARY- ADDRESS-2ATA. Then the computer
releases the ATN line and sends

its data; only the disk will receive the data, éimel disk will know to put it onto the file calledXX

The last character sent by the computer will algoad EOI. After the computer has sent enough
data for the moment, it will pull ATN on again asend DEVICE-8-UNLISTEN. Many bursts of
data may goto the file; eventually, the computdt @lose the file by sending (with ATN on, of
course) DEVICE-8-LISTEN;SECONDARY-ADDRESS-2-CLOSETN overrides everything in
progress, A disk file might have lots of charaster give to the computer, but the computer wants
only a

little data. It accepts the characters it wartientswitches on ATN and commands the disk to
Untalk. The disk has not sent EOI, but it will@bsnect as commanded. Later, when it's asked to
Talk again, it will send more characters.

ATN SEQUENCES

When ATN is pulled true, everybody stops what they doing. The processor will quickly pull the
Clock line true (it's going to send soon), so it rbayhard to notice that all other devices relehse t
Clock line. At the same time, the processor resdke Data line to false, but all other devices ar
getting ready to listen and will each pull Datattae. They had better do this within one
millisecond (1000 microseconds), since the progessweatching and may sound an alarm ("device
not available") if it doesn't see this take placéinder normal circumstances, transmission now
takes place as previously described. The compaiteending commands rather than data, but the
characters are exchanged with exactly the samengirand handshakes as before. All devices
receive the commands, but only the specified deaicts upon it. This results in a curious
situation: you can send a command to a nonexistevice (try "OPEN 6,6") - and the computer
will not know that there is a problem, since itemes valid handshakes from the other devices.
The computer will notice a problem when you trysend or receive data from the nonexistent
device, since the unselected devices will have prdpoff when ATN ceased, leaving you with
nobody to talk to.

TURNAROUND

An unusual sequence takes place following ATN & ttomputer wishes the remote device to
become a talker. This will usually take place omlffer a Talk command has been sent.
Immediately after ATN is released, the selectedaewill be behaving like a listener. After allsit
been listening during the ATN cycle, and the coraput

has been a talker. At this instant, we have "wnoag" logic; the device is holding down the Data
line, and the computer is holding the Clock lind/e must turn this around. Here's the sequence:
the computer quickly realizes what's going on, amtsghe Data line to true (it's already there), as
well as releasing the Clock line to false. Theidewaits for this: when it sees the Clock line go
true, it releases the Data line (which stays truenay since the computer is now holding it down)
and then pulls down the Clock line. We're now in starting position, with the talker (that's the
device) holding the Clock true, and the listende (tomputer) holding the Data line true. The

J. Derogee Page 7 2008-02-24

computer watches for this state; only when it hasegthrough the cycle correctly will it be ready
to receive data. And data will be signalled, ofirse, with the usual sequence: the talker releases
the Clock line to signal that it's ready to sende Tdgic sequences make sense. They are hard to
watch with a voltmeter or oscilloscope since yon'tceell which device is pulling the line down to
true. The principles involved are very similar km$e on the PET/CBM IEEE-488 bus - the same
Talk and Listen commands go out, with secondaryes$es and similar features. There are fewer
"handshake" lines than on IEEE, and the speedvees| but the principle is the same.

-End of document-
Copyright 1983 by Jim Butterfield (published in Compute!)

J. Derogee Page 8 2008-02-24

TALKER

Dout

Doul ~+ high

Tunegul Error
Device not Presen)

J. Derogee

—
Cout
L st T
byle batore
Untalk’ & tinlisten’ ?
ECI sel Din
- —
YEs
Cout
Cout — low
Dout
Oulpul data —
byte
ho Oin
¥es

£ Dout

LISTENER

no
vas
r Doul —» high I
Gin - tow
b 1
slter 256us VIC 15 assarting EO!
Dout == high l
no
ves

Page 9

lnput data byte

!
I

Delay 60ups”
Dout & Coul — high

®

2008-02-24

’7 BYTE SENT UNDER ATTENTION (TO DEVICES)

NORMAL
| I‘*DATA BYTES

Ts
~Tar= | |Thel |4+ Ty ~|Tqle

s TN [~ UEEEEEH

___I i LS
To b ' Tee
”} DATA VALID Te ,
LISTENER READY-FOR-DATA LISTENER DATA-ACCEPTED

END-OR-IDENTIFY HANDSHAKE (LAST BYTE IN MESSAGE)

TALKER FIEAD‘:"-;I'D-EEND TALKER SENDING
}

CLOCK ||||I|||

|~—-Tgg

Ts+ 4Ty | |

s T

MSE

|
| L ' J L
—iTy T‘r‘E""TEI+ Tay Te bl TER
¥

LISTENER READY-FOR-DATA
EQI-TIMEOUT HANDSHAKE SYSTEM LINE

LISTENER READY-FOR-DATA RELEASE
TALK-ATTENTION TURN AROUND (TALKER AND LISTENER REVERSED)

DEVICE ACKNOWLEDGES IT IS NOW TALKER
' TALKER READY-TO-SEND

CLOCK ||||[||| [

TNE

|
o W L

".TH|"1." Toc|Toa b | NI, [4T
Ts (o] 1] g|8|8 l

el

' LEE M
-~Ty L_ iBTF |——

¥
READY FOR DATA

BECOMES LISTENER, CLOCK = HIGH, DATA LOW

J. Derogee

Page 10 2008-02-24

TALKER READY-TO-SEND

'

CsUUUUUUUUL

ThE] | 1=Tv

| TALKER SENDING

| ~Teg/~

"
¢ DATA VALID

3 {11\ || | |

LISTENER READY-FOR-DATA

MSB |
~ITele &
L]

oml

\ L4 ==Tv

Ty

Il

LISTENER DATA-ACCEPTED

CBM Serial Bus Control Codes

Description Symbol Min. Typ. Max.
ATN RESPONSE (REQUIRED) Tat - - 1000us
LISTENER HOLD-OFF T 0 - infinite
NON-EOI RESPONSE TO RFD Tne - 40us 200us
BIT SET-UP TALKER' Ts 20us 70us -
DATA VALID Ty 20us 20pus -
FRAME HANDSHAKE® Te 0 20 1000us
FRAME TO RELEASE OF ATN 3 20us - -
BETWEEN BYTES TIME BB 100us - -
EOI RESPONSE TIME JE 200us 250us -
EOI RESPONSE HOLD TIME Te 60us - -
TALKER RESPONSE LIMIT Ry 0 30us 60us
BYTE-ACKNOWLEDGE" Ter 20us 30us -
TALK-ATTENTION RELEASE Trk 20us 30us 100us
TALK-ATTENTION ACKNOWLEDGE Toc 0 - -
TALK-ATTENTION ACK. HOLD Toa 80us - -
EOI ACKNOWLEDGE TR 60us - -
Notes:

1: If maximum time exceeded, device not presermrerr

2: If maximum time exceeded, EOI response required.

3: If maximum time exceeded, frame error.

4: Ty and Ter minimum must be 60us for external device to balket.

5: Tg; minimum must be 80us for external device to bstarer.

J. Derogee Page 11 2008-02-24

Serial Bus Pinouts

Pin | Pin name and function °
1 SRQ : Serial Service Request In 5
2 GND : Ground)
3 ATN : Serial Attention In/Out ©
4 CLK : Serial Clock In/Out £
5 DATA : Serial Data In/Out IEC connector

6 RESET . Serial Reset (on rear of CBM computer)

SRQ: Serial Service Request In:
This signal is not used on the C64. On C128 iepaced with Fast Serial Clock for the 1571 digkedr

ATN: Serial Attention In/Out:

Sending any byte with the ATN line low (sending andttention) causes it to be interpreted as a Bus
Command for peripherals on the serial bus. WherCéw brings this signal LOW, all other deviceststar
listening for it to transmit an address. The dewddressed must respond in a preset period of time;
otherwise, the C64 will assume that the deviceesi#rd is not on the bus, and will return an errdine
STATUS word.

CLK: Serial Clock In/Out:
This signal is for timing the data sent on theadyus. This signal is always generated by thevacti
TALKER. RISING EDGE OF THE CLOCK means data bitaid.

DATA: Serial Data In/Out:
Data on the serial bus is transmitted bit by ba &tme on this line.

RESET: Serial Reset:

Some say that you may disconnect this line to yauve disk drive, but in fact resetting the driveemh
you reset your computer is very logical and isahly way to reset your drive whithout switching it
OFF and ON.

J. Derogee Page 12 2008-02-24

NORMAL OPERATION:

Read file from device#8

LOADfilename”,8,1
/28 /FO filename /3F
/48 /601read datg /5F
/128 /EO /3F

Write file to device#8

SAVEfilename”,8,1
/128 /FO filename /3F

/28 /160 send data /3F
128 /EO /3F

FILE NOT FOUND SITUATION:

Read file from device#8

LOADfilename”,8,1
/28 /FO filename /3F

/48 /6071 release data and clock Thissituation isrecognized by the computer asan error
128 /EO /3F

READING THE ERRORCHANNEL:

OPEN 15,8,15 Thisline does not start |1EC traffic, it prepares the computer for communication
INPUT#15,A,B$,C,D
PRINT A,B$,C,D

CLOSE 15
148 /6F) 30 30 2C 20
TALK #8 DATA chl5 Turn ‘O’ ‘0 i ‘SPACFE’

Reading the error channel only works when no fde been opened on channel 15.

J. Derogee Page 13 2008-02-24

The difference between a 2-line and a single lin@mmand to the 1541 drive :

Scratch a file name “T” on a media inside device#8

OPEN 15,8,15 «this line does not start IEC traffic, it preparlee tomputer for communication
PRINT#15,"S:T”

128 /6F 53 3A 54 0D 13F

LISTEN #8 DATAchl5 'S v T ‘CR’ UNLISTEN

OPEN 15,8,15,"S:T”

128 IFF 53 3A 54 13F
LISTEN # OPEN chl5 ‘S’ o T UNLISTEN

J. Derogee Page 14 2008-02-24

To send a data byte to a drive, that device mtsttlie "listened”. If the Secondary address (from
here referred to as: SA or channel) is 15, theednill interpret the data as a DOS command. A
DOS command is executed when the drive is UNLISTE($SF).

If the channel is not 15, DOS will ignore it unlgssi first sent an OPEN.

An OPEN is sent to tell DOS where you want youadatgo.

That is done by LISTENing the device. With -ATN hja character string must be sent. That will
be either a filename (to open a write file), or stimmng like "#", "#2", etc. That tells DOS to veit
your data to one of the five DOS buffers. ThethwATN low, send an UNLISTEN.

channel = 0 is reserved for a reading a PRG file.

channel = 1 is reserved for a writing a PRG file.

channel = 2-14 need the filetype and the read/latein the filename as ",P,W" for example.
channel = 15 for DOS commands or device status info

After the OPEN is sent, you can send a LISTEN usiiegchannel used in the OPEN.
DOS has a table of opened files, and will use ti@nel to write your data to the corresponding
file.

The purpose of a CLOSE, for a file named "#", ifré@ up that DOS buffer. For a file whose
name appears in the disk directory, a CLOSE wilb#e7 of the filetype byte in the directory
descriptor, update the block count, and save BAbkha disk. DOS will even turn off the drive-
LED.

You can keep files open in several devices, antebwata first to one and then another. Just
UNLISTEN a device before LISTENing another. Youdeave a drive with a "LISTEN" device
address of 8 and a "TALK" device address of 9. Arodrive can use 8 for both "LISTEN" and
"TALK" device addresses. That is how you can dmadla file to both devices at the same time,
and still be able to read the individual error ahels.

The KERNAL routines, when the computer is sendiatadalways buffer one byte. The KERNAL

UNLISTEN, UNTALK, LISTEN, and TALK routines checlof a buffered byte. If one is present,
it is sent delayed. Then the routine does its @gob.

J. Derogee Page 15 2008-02-24

To open a file in a disk drive, there is no neexb &b open a file in the computer. However, that i
usually done for the sake of convenience. BUuKIERNAL LOAD and SAVE routines open read and
write files in the IEC (serial) device, without alepening files in the computer. To open a filam

IEC device, the -ATN line must be taken low (bytiset bit 3 of $DD00). Then, the CLK line is taken
low (bit 4 of $DDOO0 is set), and the computer wéitsone millisecond. After which the device numbe
ORed with $20 is sent via slow serial. With -ATtill $ow, the channel ORed with $FO0 is then sent; -
ATN is then taken high. Next, the filename strimgent to the drive, still using slow serial. Ttgng

is terminated by "=", by ",", or by a count of 18acacters, whichever comes first. If the drive DOS
encounters ",a" or ",a,b" (where "a" and "b" mayabg characters), it uses that information to
determine file type and data direction. If therelater is not valid it is tossed; there is no erréirst
direction is checked; "w" is "write" and "r" is 'ad". That may be overridden by the channel; an
channel of 0 defines "read" and an channel of ihdsf'write". For any other channel (2 to 14}thére

is no direction character, "read" is set. DOS tloeks for a file type characater; "u" is "usr", 'ig"

"prg"”, and "s" is "seq". If the direction is "réadnd there is no file type character, ANY fil@égyis
acceptable. An exception occurs for no file typaracter and an channel of 0; that defines "pHthe
direction is "write", and there is no file type caeter, "seq" is set. An exception occurs fofilgotype
character and an channel of 1; that defines "phg'the special case of the string's being ",w", the
infamous "comma" filename will appear in the dicegtof a 1541 disk. This C-64 BASIC program will
write 144 files named "," to a freshly formattedldi The files cannot be directly deleted.

10 fori=1to144:0pen8,8,8,",w".close8
20 next

After the string is sent, the device is UNLISTENedTN is taken low, CLK is taken low, the
computer waits for one ms, and $3F is sent to éwicd. The file is now opened in the device; the fi
may be closed by doing a modified OPEN. No stitngent, and the channel is ORed with $EO rather
than with $F0. Between the OPEN and the CLOSH oty be read from a "read" file by TALKing
the drive, or written to a "write" file by LISTENgthe drive. Also, a device may be UNTALKed or
UNLISTENed. For LISTEN, the device number ORedw#R0 is sent as with OPEN or CLOSE.
Then, with -ATN still low, the channel is sent OReith $60. -ATN is then taken high. For TALK, it's
the same, except that the device number is ORdd$4d. Also for TALK, after the channel is sehigt
bus must be "turned around”. That is accomplishethking the DATA line low (setting bit 5 of
$DD00), taking the -ATN line high (clearing bit 88DDO00), taking the CLK line high (clearing bit 4
of $DD00), and looping until the CLK line is lowrttil bit 6 of $DDO0 is clear). For UNLISTEN and
UNTALK, just one byte is sent (in the same manrseth@ device number is sent for LISTEN, TALK,
etc.). That byte is $3F for UNLISTEN and $5F fdNTALK; ALL devices on the bus are commanded
either to close their ears or to shut up. Afterliizee is sent, -ATN is taken high.

J. Derogee Page 16 2008-02-24

How to change the device number without changiegumpers

This actually works on all the drives. It works @hthe variations of the 1541, plus the 1571, 1581
and all the CMD drives including the RAMLink ancetRAMDrive.

If you want to disable a drive, modify line 20 savill accept a value of 1. Since no software will
ever attempt to access device 1 the drive will neegpond and will sit there quietly even though

it is still turned on. If you still want to be altie bring it back to life, change the device numioe

or 7. Very few programs ever look for anything lveldevice 8.

5 INPUT "OLD DEVICE NUMBER";0DV

10 INPUT "NEW DEVICE NUMBER":DV

20 IF DV<8 OR DV>11 THEN 10

30 OPEN 15,0DV,15

40 PRINT#15,"M-W"CHR$(119)CHR$(0)CHR$(2) CHR$(DV+EHR$(DV+64)
50 CLOSE 15

J. Derogee Page 17 2008-02-24

A brief history of the IEC-bus
By Jim Butterfield

As you know, the first Commodore computers usedlfi€E bus to connect to peripherals such as disk
and printer. | understand that these were availably from one source: Belden cables. A couple of
years into Commodore's computer career, Belden aainbdf stock on such cables (military contract?

who knows?). In any case, Commodore were in quiig: they made computers and disk drives, but
couldn't hook 'em together! So Tramiel issued therdOn our next computer, get off that bus. Make

it a cable anyone can manufacture”. And so, a@gsiith the VIC-20 the serial bus was born. It was

intended to be just as fast as the IEEE-488 it

"Technically, the idea was sound: the 6522 VIApdmas a "shift register” circuit that, if tickledtivthe
right signals (data and clock) will cheerfully aadt 8 bits of data without any help from the CPAL

that time, it would signal that it had a byte to dmlected, and the processor would do so, using an
automatic handshake built into the 6522 to trigdper next incoming byte. Things worked in a similar
way outgoing from the computer, too. We early PEBNCfreaks knew, from playing music, that there
was something wrong with the 6522's shift registerinterfered with other functions. The rule was:
turn off the music before you start the tape! ($h#t register was a popular sound generator} Bu

the Commodore engineers, who only made the chim'tdinow this. Until they got into final checkout
of the VIC-20.

By this time, the VIC-20 board was in manufactur®.new chip could be designed in a few months
(yes, the silicon guys had application notes ablmproblem, long since), but it was TOO LATE!

A major software rewrite had to take place thatngjeal the VIC-20 into a "bit-catcher” rather than a
"character-catcher". It called for eight timesnagch work on the part of the CPU; and unlike thié sh
register plan, there was no timing/handshake diack. The whole thing slowed down by a factor of
approximately 5 to 6.

When the 64 came out, the problem VIA 6522 chip baén replaced by the CIA 6526. This did not
have the shift registerproblem which had causeabteoon the VIC-20, and at that time it would have
been possible to restore plan 1, a fast serial INate that this would have called for a redesigthe
1540 disk drive, which also used a VIA. As besth estimate - and an article in the IEEE Spectrum
magazine supports this - the matter was discus#thvCommodore, and it was decided that VIC-20
compatibility was more important than disk sped@erhaps the prospect of a 1541 redesign was an
important part of the decision, since current irteees needed to be taken into account. But tp kiee
Commodore 64 as a "bit-banger"”, a new problem arose

The higher-resolution screen of the 64 (as compévetthe VIC-20) could not be supported without
stopping the CPU every once in a while. To be ex&stery 8 screen raster lines (each line of tekg,
CPU had to be put into a WAIT condition for 42 neiseconds, so as to allow the next line of scredn te
and color nybbles to be swept into the chip.(Mareetwould be needed if sprites were being used). Bu
the bits were coming in on the serial bus fastanttinat: a bit would come in about every 20uSeo! S
the poor CPU, frozen for longer than that, wouldssnsome serial bits completely! Commodore's
solution was to slow down the serial bus even mbhat's why the VIC-20 has a faster serial bus than
the 64, even though the 64 was capable, technjadllpinning many times faster.

Fast disk finally came into its own with the Comrooel 128.

J. Derogee Page 18 2008-02-24

Commodore 64 serial bus functions

Address Function

Send TALK command to serial bus.
Input: A = Device number.

Output: —

Used registers: A.

Send LISTEN command to serial bus.
Input: A = Device number.

Output: —

Used registers: A.

Flush serial bus output cache, at memory addre@835@o serial bus.
Input: —

Output: —

Used registers: A.

Send LISTEN secondary address to serial bus.
Input: A = Secondary address.

Output: —

Used registers: A.

Send TALK secondary address to serial bus.
Input: A = Secondary address.

Output: —

Used registers: A.

Write byte to serial bus.
Input: A = Byte to write.
Output: —

Used registers: —

Send UNTALK command to serial bus.
Input: —

Output: —

Used registers: A.

Send UNLISTEN command to serial bus.
Input: —

Output: —

Used registers: A.

Read byte from serial bus.
Input: —

Output: A = Byte read.
Used registers: A.

$EDO9

$EDOC

$ED40

$EDB9

$EDC7

$EDDD

$EDEF

$EDFE

$EE13

J. Derogee Page 19 2008-02-24

$EES5

$EESE

$EE97

$EEAO

$EEA9

$F1AD

$F237

$F279

$F3D5

$F528

Set CLOCK OUT to high.
Input: —

Output: —

Used registers: A.

Set CLOCK OUT to low.
Input: —

Output: —

Used registers: A.

Set DATA OUT to high.
Input: —

Output: —

Used registers: A.

Set DATA OUT to low.
Input: —

Output: —

Used registers: A.

Read CLOCK IN and DATA IN.

Input: —

Output: Carry = DATA IN; Negative = CLOCK IN; A =ICOCK IN (in bit #7).
Used registers: A.

Read byte from serial bus; read $0D, Return, iickestatus != 0.
Input: —

Output: A = Byte read.

Used registers: A.

Define serial bus as standard input; do not sendKI'gecondary address if
secondary address bit #7 = 1.

Input: A = Device number.

Output: —

Used registers: A, X.

Define serial bus as standard output; do not séS@EN secondary address if
secondary address bit #7 = 1.

Input: A = Device number.

Output: —

Used registers: A, X.

Open file on serial bus; do not send file namedondary address bit #7 = 1 or file
name length = 0.

Input: —

Output: —

Used registers: A, Y.

Send UNTALK and CLOSE command to serial bus.
Input: —

Output: —

Used registers: A.

J. Derogee Page 20 2008-02-24

Send UNLISTEN and CLOSE command to serial bus.
Input: —

Output: —

Used registers: A.

Close file on serial bus; do not send CLOSE seayralddress if secondary addrass
bit #7 = 1.
$F642 Input: —
Output: —
Used registers: —

Unknown. (Set serial bus timeout.)
Input: A = Timeout value.

Output: —

Used registers: —

$F63F

$FE21

J. Derogee Page 21 2008-02-24

Standard KERNAL functions

LSTNSA. Send LISTEN secondary address to serial (ddgst call LISTEN beforehands.)
Input: A = Secondary address.
$FF93 Output: —
Used registers: A.
Real address: $EDB9.

TALKSA. Send TALK secondary address to serial fMsist call TALK beforehands.)
Input: A = Secondary address.
$FF96 Output: —
Used registers: A.
Real address: $EDC?7.

SETTMO. Unknown. (Set serial bus timeout.)
Input: A = Timeout value.
$FFA2 Output: —
Used registers: —
Real address: $FE21.

IECIN. Read byte from serial bus. (Must call TAlaKd TALKSA beforehands.)
Input: —
$FFA5 Output: A = Byte read.
Used registers: A.
Real address: $EE13.

IECOUT. Write byte to serial bus. (Must call LISTEMd LSTNSA beforehands.)
Input: A = Byte to write.
$FFA8 Output: —
Used registers: —
Real address: $EDDD.

UNTALK. Send UNTALK command to serial bus.
Input: —
$FFAB Output: —
Used registers: A.
Real address: $EDEF.

UNLSTN. Send UNLISTEN command to serial bus.
Input: —
$FFAE Output: —
Used registers: A.
Real address: $EDFE.

LISTEN. Send LISTEN command to serial bus.
Input: A = Device number.
$FFB1 Output: —
Used registers: A.
Real address: $EDOC.

TALK. Send TALK command to serial bus.

$FFB1 Input: A = Device number.

J. Derogee Page 22 2008-02-24

Output: —
Used registers: A.
Real address: $EDO09.

J. Derogee Page 23 2008-02-24

oL LY

Issue 6, 1985 : Computer 1 = commOdDI"e

Model: C-64, C-16, Plus 4 TEGHToplcs

SCHEMATI CS FOR C-64 C—].G PLUS 4 ® 1980 COMMODORE BUSINESS MACHINES INC.

These computers have been affected by an Engineering
Change Order that adds 4 diodes to the serial port. These
protection diodes are not required as field upgrades. They
are 1N914s and were added as a circuit improvement.

The Schematic and PCB Layout for the C-64 in the
Service Manual (Pages 28 and 32) include these diodes.
However, the C-16 and Plus 4 Service Manuals were completed
before the changes were made. The Schematic corrections are
shown below:

— A .t
2 [
§ 22—
vz’ -
N ~ e
Q : 2L
N Kl < 8
S -
& 7l
3 . L N
: ¢
g LT U DN e
3 Ris 7 = 3
| ~ | r2pa-
S [
es7 war } CASRD 26)ng l\,z
34l 4
ZEE ¥ 2l D
v 1] S ¥
”P! 1 28, O |
C-~16 SCHEMATIC
Fg22 ‘ | e KDY
e - 2tra
1 f— N.C. - \
SERIAL BUS| JRELE) PoIN
G PIN "3—24’ 7406
Eﬁ:ﬂ‘ALE 5 | DATA 2% 80@‘) 30|
cNz 2 Lo % ev@s 2l vz
Y JlF_B_?—._‘_’j rwo@u 28|00
. BU— '(%\QCET MTR 27 p3
gL CST RD 26 pa

+5V %3
R23 ST
E% trioot | B2
Kea e) 25
R2% - . — PG
CST WRT G@ ‘:pp
PLUS 4 SCHEMATIC

J. Derogee Page 24 2008-02-24

THE SERIAL BUS

The C128 Serial Bus is an improved version of the C64/VIC 20 serial bus. The C128 improves this
bus by allowing communication at much greater speeds with specially designed peripherals, the most
important being the disk drive, while still maintaining capability with older, slower peripherals used

by the VIC 20 and the C64.

Description

The slow serial bus does not use the SERVICE REQUEST line.
The fast serial bus uses it as a fast bidirectional clock line.

Chassis ground.

The ATTENTION line is a low active handshake used to
address a device on the bus.

This is the slow serial CLOCK. It is used by slow serial devices
to clock data transmitted on the serial bus.

The bidirectional serial DATA line is used by both slow and
fast devices to transmit data in sync with a clock signal.

Pin No. Signal

Serial Interface Connector 1 SERIAL SRQ

2 GND

3 SERIAL ATN

4 SERIAL CLK

5 SERIAL

DATA
6 RES

The RESET line is used to reset all peripherals when the host
resets.

m—f

LY

v

L DATA VALID |
LISTENER READY-FOR-DATA

je— BYTE SENT UNDER ATTENTION (TD DEVICES) —————{ [c—NORMAL DATA BYTES
r

[
QLU S
Gl N B o e

L LISTENER

TALKER READY-T0-SEND
[~TALKER SENDING

|

DATA VALID

USTENER READY- FOR-DATA LUSTENER DATA-ACCEPTED

DATA-ACCEPTED

END- OR-IDENTIFY HANDSHAKE (LAST BYTE IN MESSAGE)

TALKER READY-TO-SEND
I ~TACKER SENDING

CLOCK | T
o —
T L . L

1 il !

I L L {ISTENER READY-FOR DATA J

€01 - TIMEOUT HANOSHAKE

“11STENER READY- FOR-DATA
SYSTEM UINE RELEASE

Bus Operations

TALK-ATTENTION TURN ARDUND (TALKER=> LISTENER TO LISTENERC= TALKER)

i ru(vlcl ACKNOWLEGES (T 13 NOW TALKER
H ~ TALKER READY-TO-SEND

CLOCK

T

L—— READY FOR DATA
BECOMES USTENER CLDCK = HIGH,DATA LOW

There are three basic bus operations that take place on the serial bus, in both fast and slow modes.
The first of these is called Control. The C128 is the controller in most circumstances. The controller
of the bus is always the device that initiates protocol on the bus, requesting peripheral devices to
do one of the two other serial operations, either Talk or Listen.

All serial bus devices can listen. A Listener is a device that has been ordered by the Controller to
receive data. Some devices, such as disk drives, can talk. A Talker can send data to the Controller.
Both hardware and software drive this bus protocol.

54

J. Derogee

Page 25

2008-02-24

THE SERIAL BUS (Continued)

The Standard (Slow) Serial Bus

The slow serial bus uses the port lines of the 6526 at U4, C1A 2, to drive ATN, CLK and DATA.
The operation is the same as that of the C64 and when in C64 mode, slow to fast interference is
automatically removed.

The Fast Serial Bus

In order to talk as a fast talker, the Controller must be addressing a fast device. When addressing
any device, the C128 sends a fast byte, toggling the SRQ line eight times, with the ATN line low.
If the device is a fast device, it will record the fact that a fast Controller accessed it and respond
with a fast acknowledge. If the device is a slow device, no response is delivered and the C128 then
assumes it is talking with a slow device. The status of the fast or slow is retained until the device
is requested to untalk, unlisten, or if an error or system reset occurs.

The fast serial bus, in order to achieve its speed increase, uses different hardware than that of the
slow serial bus. The fast serial method is to use the serial port lines of the 6526 U1, CIA 1, pin 39,
to actually transfer the serial data. This increases the transfer rate dramatically.

The FSDIR bidirectional control line signals the MMU at U7, pin 44, that a fast device is present.
The MMU then outputs control signals to the data direction buffer hardware for fast serial operation.

55

J. Derogee Page 26 2008-02-24

