PERSONAL COMPUTER
PERSONAL COMPUTER

PERSONAL COMPUTER

PET 2001-8
PERSONAL COMPUTER
USER MANUAL

OCTOBER 1978

The information in this manual has been reviewed and is believed to be entirely reliable. However,
no responsibility is assumed for inaccuracies. The material in this manual is for information
purposes only and is subject to change without notice.

first edition
©® Commodore Business Machines, Inc., 1978
“All rights reserved”

Commodore Business Machines
901 California Avenue
Palo Alto, California 94303

TABLE OF CONTENTS

Chapter 1. WelcometoyourPETcomputer........... .ot 1

Chapter 2. UnpackingyourPETandturningiton 3

Chapter 3. Basickeyboardinput 11
PET keyboard

Screen editor

Chapter 4. BeginningBASIC 19
The PRINT statement
Variables
Direct and program statements
Literals
Functions

Chapter 5. Elementaryprogramming i e 32
Unconditional and conditional looping '
Data entry

Chapter 6. Advancedprogrammingtechniques 38
String variables and functions
Subroutines
FOR NEXT loops
Subscrpted variables

Chapter 7. PETcommunicationwiththeoutsideworld 57
PET interfaces and lines
Commands and operations for
peripheral devices
IEEE-488bus

Chapter 8. Machinelanguageprogrammingc..vuvunnnoon. .. 91
Allocation of memory
Commands from BASIC
Machine language monitor

Chapter 9. Errorsanddiagnostics 113
Debug techniques
BASIC error messages
OSerror messages

LIST OF FIGURES

2.1 Rearview of PET 20071 i et

2.2 PETmemorybus
2.3 Memory map by functionaibiocks
2.4 ASClicodeinmainmemory,
25 ASCHBbitcode
26 PET graphiccharactercodes
3.1 PET keyboardscanlines........... ...,
6.1 Functions expressed in terms of built-in BASIC functions.......
6.2 Principal pointersinto PETRAM
71 Simplifiedviewof PET
7.2 EdgeconnectorsJlandJ2....... oo
7.3 PETIEEE connectorpinout i ...
7.4 Receptacles forthe IEEE interface P
7.5 IEEE standardconnectors i il
7.6 Parallel user portinformation
7.7 6522 ViAaddressesin PET
7.8 Parallel userportexampleot nnnnnnnn.
7.9 Connector J3 contact identification
7.10 Second cassetteinterfaceport o ...
7.1 PET second cassetteedgeconnectorJd3
7142 EdgeconnectorJdd.

12

43

55

57

57

58

58

59

59

61

62

62

62

63

63

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

7.26

8.1

8.2

LIST OF FIGURES(continued)

Memory expansion CONNECEOro iveninn i 63
Multiple filestructure i 69
OPEN forwrite from PET i e 73
OPENforreadto PET e 74
Status WOrd erTOrS . o ottt i e e RERREEEES 80
Default parameterst 82
Examples of default parameters o 82
IEEE bus contact identificationo oo 83
Transfer bus handshakesequencet 84
Byte transfer from talkertolistener.............. 85
Signals described by IEEEbusgroups 87
Status codesfor IEEEbus i 88
IEEE-488 register addressés iNPET i 88
Code assignments for command mode operation.............. 89
Example Floating Point Numbers, 94
Machine Language Monitor Listing 100

LIST OF APPENDICES

Detailed PET memory map
BASIC statements

BASIC commands
Expressions and operators
Space and speed hints
Main logic board assembly

Suggested reading

NOTES

Chapter 1. WELCOME TO YOUR PET COMPUTER

Congratulations and welcome to the exciting new world of personal computers. By selecting

the PET 2001 you have eliminated the problems of getting a personal computer system running. Your time
is now available for learning the functions and capabilities of your PET. In fact, if you follow a few simple
procedures outlined in this manual, you should be able to achieve initial operation of your Pet 2001 within
a short period after unpacking the shipping container.

The potentials of your PET are virtually limitless. This book, by its very nature, is limited. Questions will
arise that this book has not covered or even anticipated.

Write to us at Commodore with your questions. We will answer many that you and other users will pose
with a newsletter we'll be sending out from time to time to users.

Commodore Systems Divisions:

901 California Avenue
Palo Alto, California 94304
USA

360 Euston Road
London NWI 3B1
England

3370 Pharmacy Avenue
Agincourt

Ontario, M1W 2k4
Canada

PET is a Personal Electronic Transactor. Everything is complete in one steel cabinet. It contains a CRT
board, keyboard, computer board, and a Commodore supplied cassette. There is a built-in black and
white television monitor, which displays characters in a format that appear to you to be forty characters
by twenty-five lines.

At the heart of your PET 2001 is an MCS 6502 microprocessor. This microprocessor totally controls
operation of the screen, keyboard, cassettes, and additional peripherals which can be added to the PET.
The product is so construed that you cannot damage the PET from the keyboard. The operating system
cannot be destroyed because the computer software, or operating instructions are contained in a fixed
memory. (Called Read-Only-Memory) This allows both the first time user and the sophisticated user to
use the PET with impunity.

In order to satisfy the needs of the serious user as well as the first time user of a computer product, we
have used three formats in this manual.

Summary discussions in this type font are designed to answer the questions of a professional
programmer. When you are first using your PET manual, read these sections lightly and spend time on the
more detailed explanations which are in the type font of the preceding paragraph. After you have used the
PET a bit, the italicized summary sections will be useful when you want to review how a particular
instruction works.

The third type of format gives a detailed description of how the PET implements a section. These
sections are for people who use the PET at the machine level. The first time reader may find these
sections difficult to follow and we recommend he/she use them only on re-reading the material when
more familiar with the PET operating system. The language which you will use to communicate with your
PET is called BASIC, an acronym for Beginners All-purpose Symbolic Instruction Code.

It should be noted that there are other reference material written about BASIC, with different types

of usage in mind, which are available to the public. We have included a list of such suggested reading in
the appendix. Some of these manuais may be more useful to satisfy a specific need which is not covered
in this particular manual.

The ultimate teaching device for iearning how the PET works is the PET itself. In some cases, we will
ask you to use the PET along with the text, rather than just continuously reading what to do. In any
case, this documentation is sufficient to allow you to get started on an example. By constructing similar
examples of your own, any questions which might arise are answered by the machine itself. Of course,
we invite comments on this material and particularly on examples which you as an individual have used
to resolve any unclear statement.

Lastly, since this manual cannot presume to provide all technical information of hardware or
programming aspects of the MCS 6502 microprocessor, we direct you to two other Commodore
publications: There is a manual available from your dealer called Hardware Manual which also includes
descriptions of the auxilliary devices which generate the control signals necessary to allow the PET to
operate. Detailed specifications of the computer and the language in which it operates are available in a
book called Programming Manual. This is available for purchase from your PET dealer or either can be
purchased from Commodore directly.

NOTES

Chapter 2. UNPACKING YOUR PET AND TURNING IT ON

Please check the carton for any special unpacking instructions and carefully examine your PET for any
concealed damage. If anything is amiss, reportly this immediately to both the place of purchase and the
shipping agent.

Remove your PET from its protective shipping carton and place it on the counter, desk, or other suitable
surface, then plug it into any standard, grounded electrical outlet. (In some countries no plug is provided.)

TV BRIGHTNESS
ADJUSTMENT

POWER
SWITCH

|IEEE-488 1.6 A FUSE
2ND CASSETTE INTERFACE J1 (SLO BLO)
INTERFACE J3

MEMORY EXPANSION
J4 CONNECTOR

PARALLEL 3-WIRE AC

USER PORT J2
SERIAL NUMBER POWER CORD

AND
ELECTRICAL SPEC.

Figure 2.1. Rear view of PET 2001-8 showing switch,
fuse, line cord and interfacing connectors

The power switch is located in the left rear of the PET. Closing the switch to the left turns the PET on and
closing it to the right turns it off. (There is a white dot on the power switch to indicate it is in the power-on
position, or an ON/OFF label.)

immediately, when the power switch is turned on, power is supplied to the internal circuits. There is a
time-out circuit in a special condition (reset condition) which initializes them into a known state. If the
screen has had power immediately prior to this time, you will see on the screen a variety of strange
characters which refiect the current contents of the computer memory which is controlling the screen.
The screen memory transfer to the screen is done with circuitry outside control of the main
microprocessor, and so, even when the computer is not operational, the screen always displays the
current contents of the screen memaory.

At the end of the power-on cycle, the computer initializes the internal memory, blanks the screen
temporarily, and then displays on the screen a message like the following:
COMMODORE BASIC

7167 BYTES FREE

READY.

O
The 7167 refers to available users’ programmable memory. A byte is the fundamental data element of the
PET computer and corresponds roughly to one letter or digit of information. The 8K model should show-
in theory - “8192 bytes”. But a few hundred are used by the PET internally. The balance shown “7167” is
net available bytes. ‘

If you fail to get the power-up display the first time, try turning the power switch slowly off, then back on.

To get the display, four different types of memory are used: ROM, User Read/Write, /O
(Input/Output), and Screen Memory.
The relationship between these memories is shown in figure 2.2.

6502
microprocessor

AN

\//

address and data-bus

A\ /1 1 1
y \)/ N V¥V 4
ROM RAM TV RAM 110
14k 8k 1k 2k
keyboard user port
N
IEEE-488

Figure 2.2. PET memory bus

ROM (READ ONLY MEMORY)
ROM causes the PET to perform most of its operations. In each PET, 14K of ROM contains a series of

programs written by Commodore which scan the keyboard, print the display, control input/output, count
the real time clock, and execute commands that the user types in. Read Only memories are not only
the lowest cost memory for storing this data, but also give the user the most protection and the fastest
operation of his machine. This is because the operating system memory is indestructible from the
keyboard, or from the user’s program. Not only is the machine available to run basic from the moment itis
powered on, but also the user program cannot damage the basic operating system.

/0 MEMORY
The second type of memory is that which is devoted to Input/output operations. This memory contains 110

devices called PIA* and VIA** which allow the PET to individually control the bits that manipulate the
computer. Except when special /O operations are desired, the user should not allow his program to
interfere in any way with these areas. The operating system automatically handies these locations in
order to perform legitimate Input/Output operations.

USER READ-WRITE MEMORY - R.A.M.(RANDOM ACCESS MEMORY)
The third type of memory is the User Program Memory Space. (We will call this area RAM

throughout this book.) In a standard 8K PET, it is located from location $0000 to hexidecimal
$1FFF. A detailed map of all the memory is included in figure 2.3, showing where the ROM,

RAM, /O, and Screen Memory are located from a programming standpoint. As you can see

by the map, the first 1024 bytes of memory are reserved for the operating system to use

for its various tasks, including the buffering of data from the cassettes and other I/O devices.

The message “7167 BYTES FREE” is a result of an analysis of BASIC which starts at

locxation 1024 and cycles through the memory to determine which locations are available, thereby,
performing a check on whether or not the Read/Write Memory is working correctly.

If the number was less than 7167, you may have a hardware problem. {f the number is

greater than 7167, you probably have added your own memory. BASIC can automatically check

up to 32K of RAM as long as the added memory is continuous to the memory that comes

furnished with the PET. This memory is really the working memory in the machine; it is where programs
are loaded and BASIC holds all of the program variabies.

Later on, we will discuss some techniques to expand this memory by using tape files and
program overlays.

SCREEN MEMORY
The screen memory is physically composed of the same kind of chips that are used to

make up the PET’s standard memory. It is constantly being used by the CRT control electronics,
which takes the individual bytes of memory and uses them to address a special character generator
ROM, thus displaying characters on the screen.

As mentioned during the power-up discussion, this process is totally automatic, and the programmer has
no direct control over it.

*PlA - Peripheral Interface Adaptor
**VIA - Versatile Interface Adaptor

For information about these and related chips, see 6502 Hardware Manual.

0 RAM Operating system and
BASIC working storage
1024
RAM _ _ _User BASIC program
User Variables
8192
Expansion RAM area-24K
32768 RAM TV
33792 2 [T T T T T T T T
34816 images of TV RAM
35840 _mages of TVRAM __ |
36864 Images of TV RAM
Expansion ROM area-12K
49152
ROM BASIC
59392
/0
61440
ROM operating system
65536

Figure 2.3. PET memory map

On every cycle of the TV screen (160 of a second), the hardware starts with the least address

($8000) in the screen memory and processes the screen data starting at the upper left-hand

corner of the screen. Each character in the memory is addressed into the character generator eight times
giving us an 8 row high character on the screen. The character ROM that is used generates

8 dots each time it is addressed. These dots are serially fed to the screen, working from left to right and
top to bottom. This gives an 8 bit wide 8 bit tall character with no spaces between characters. The CRT
controller automatically changes the addressing of the character generating ROM, depending

on whether or not it is scanning the top line of a character, the second line of of a

character, etc.

1

There are two character sets stored in the ROM. You can change the character set on the
screen by POKEing memory address 59468 with a 14(a 12 turns it back) which turns it to

the second character set. After you have played with the screen a little bit, you may want

to try this feature to see if your PET performs this way. The second character set substitutes
lower case letters for the graphic set that is available in the first set.

To understand this, let us review how characters are represented in the PET and in the memory.

CHARACTER REPRESENTATION IN PET MEMORY
The standard ASCII code is used to represent characters in the main memory. (RAM)

In the PET, the 8th bit (bit 7) is used to signify BASIC command words or graphics characters for the PET
screen.

B i Y u 5] Y i i i i
1 vl Y u i i B U i i
1 44 =] i 5] i 4} i G 1
iy |
bugy | MUl LLE =1a g 1] H SK]
ygyul | o0H DY ! i H] & Q4
yvulig | SR vz g g B K e} r
vyil | Eix ves # 3 C =] c s
yiyg | [AVE] b4 ¥ 4 D 1 d t
yivi | LG NAK % o E u e u
giig | RUK SYN & b F Y ¥ V]
gi111 | Bel LB Kd (] W -] w
ibyy | Bo CRIN { g H bt b K
iyl | Hi LM) 9 i Y i o9
igiy | Lr SUb ¥ : J 4 J 4
igil i Vi | R0 + 3 K L K
iivy | tF Fo ; L & L hS 1 !
1iv1 | o 535 - =] J m
iiie | =1¥) o > H T n
1111 ol Wo £ ! [& O

Figure 2.4. ASCII character set (7 bit code)

Example in the PET:
A is represented 0100 0001
Shifted A (a spade) is 1100 0001

The screen memory is organized with a different representation from the main PET memory.
There are only 64 characters from the standard ASCII set that are normally printable.

B ol u (5] U U
1 5 51 Y i 1
P4] i 5] i
31y |
bouy | ¢ K o
vyl | A Q ! 1
vgly | E K " s
bulil | o =] H 3
vivy | b i $ 4
Bivl | 3 u # o
vlly | F v & &
viil | o W : (1
lgoby | H # { d
iyl | 1 Y) 9
i1y | J 4 t 3 :
lulil | K L + ;
1ivy | L i s <
1ivl | b J - =
1iiv | A ¥ . >
11131 | i &« g v

Figure 2.5. ASCII 84 character set (6 bit code)

These are the same characters that are directly available on the PET keyboard.

The representation in screen memory is derived from the standard ASCII set by dropping bit
6; giving us a six bit code for the keyboard characters.

The graphic, or shifted characters, set is represented by a 1 in bit six of the screen memory, giving an
additional 64 displayable characters.

This gives the following table for PET displayable characters. It should be noted that all of the graphics
characters are organized so that they are just a shift from the normal keyboard character.

B & 1S U 5] u i i i i
1 o 5] 151 1 1l u (5] i i
o4l u i 1] 1 o i u i
3£18 |
vuuy | 54 I %] - I r
oyl | H e ! i &] | -+
vulig | B K " ey i - - T
duil | C 5 # 3 - v 4
vibg | U 1 ¥ 4 - | - i
givli | t 8] 7 o I 1]
giip | F i & & - X % (]
Wiiy | i3 bl ! ¢ i W] [
ibyy | H b 5 2 | & m -
lagd | 1 ¥ b 9 - | 1 4 -
igilg | N & ¥ : * L] i A
i¥1l i K L + i o + + n
1igy | L . s 14 (. ¥ . *
1igl | M J - = ™ [L -4
iiiv | 3] T . 7 s o o] -
iiix | U 2 / ¢ } ~ “a

Figure 2.6. PET graphic character set (7 bit code)

Example: This gives us the following conversions:

Character In main memory In screen memory
A 0100 0001 00000001
4 1100 0001 00000001
1 0011 0001 00110001
- 1011 0001 01110001

Note the reduction from seven bit ASCII to six bit gives the effect of changing the order

of A and 1. In screen memory, the 8th bit is used to store reverse field. The reverse

field consists of taking the dot pattern from the character generator and reversing it, replacing
a white dot with black and a black dot with a white.

If the operating system is used, it automatically translates the values from ASCII into the screen
memory representation. Both PRINT and direct input from the keyboard result in automatic
translation between the screen memory and the main memory.

USE OF THE SCREEN MEMORY
There are three ways to get data into the screen memory. The first of these is to POKE into

the appropriate memory address the desired translated character. This is programmed only when
normal updating of the screen is too slow.

As long as the PET directly controls the screen, there is no apparent effect from the fact that the screen
and the PET are contending for access to the memory. The routines in the PET change the screen
memory only during times when the screen memory is not being used for display. This slows

the use of the screen memory down to about 40 percent of the speed obtainable with a POKE. The POKE,
however, gives a visual effect of flashing dots, because the screen is displaying the character

that is being passed from the PET to the screen memory, rather than the character that

should be displayed at that particular position. When a program pokes to the screen, the faster

it runs the more flashing there will be.

The second way to get data onto the screen is the keyboard. During a time when keyboard input is
enabled, the character being struck on the keyboard is automatically displayed on the screen.
The third approach is by use of the PRINT command in BASIC. When

PRINT “ABC”
is typed to BASIC, it results in the next line being printed as:
ABC

This is a print of a literal field in which all characters between the quotes are printed.

The next position at which a character will be displayed if typed on the keyboard is indicated
by a flashing signal called a cursor. The cursor is a visual indication to the user of the next
print position in screen memory.

What is physically happening in the machine is that everytime the screen is recycled, about

1igoth of a second, an interrupt to the PET is generated. This generates a real-time clock on the
computer (the PET) and steps a blinker counter. When this counter reads 37, the character referenced by
the screen memory pointer is reversed in the 8th bit. This causes the reference character to

be shown in alternating normal and reverse field, giving as visual effect of blinking.

By moving the pointer, we can print output any place on the screen. This is done by using a combination
of the keyboard and some software called the screen editor, which manipulates screen memory under
control of the keyboard.

NOTES

10

Chapter 3. BASIC KEYBOARD UNIT

Whenever the blinking cursor appears on the screen, the computer transfers data from the
keyboard to the screen memory.

Keyboard data is transferred by the interrupt routine to the screen memory each time a new
key is struck. Only after a carriage return is the keyboard data transferred to the operating
program, and then a whole line is transferred at once.

There are two exceptions to this, neither one of which causes the cursor to blink. One of them
is the use of GET, which will be discussed in a later section, and the other one is when
the keyboard data is accessed directly using machine language programs.

The PET keyboard has been optimized for use as a computer keyboard, though the organization
is similar to that of a typewriter so a touch typist does not feel totally out of place.

However, some important changes have been made:

1. Because of the high use of numbers and calculations with the computer, a calculator-like
number pad has been added to the right of the main keyboard.

2. The number pad has all of the mathematical operators in a form that is normal for BASIC.
3. The various keys for screen movement and editing are located on the numeric pad.
4

_The characters which are normally the shift of the numbers on a standard keyboard no
longer require shifting. These characters are quite often used in BASIC, and it is
convenient to have them available without shifting.

5. All standard characters are unshifted, so that a complete 64-character graphics set is
available by use of the shift keys. These graphics give the PET significant line drawing ability.

PET KEYBOARD
The keyboard consists of 73 keys, including two shift keys, either one of which may be pressed to cause

the upper or shifted characters displayed on the keyboard to be operational. Lower characters

are always used unless one of the two shift keys is pressed simultaneously. Each key has

a thin, transparent plastic film covering the keytop which should be removed. This protection was
left in place to protect the keys against scratching during shipping. To remove the film, carefully
peel it off by using the sticky side of a piece of masking tape so as to avoid scratching the keytops.

There are 64 printed characters on the keyboard with 64 upper case, or shifted characters on

the same keys. The rest of the keyboard consists of function characters. Some of the functions

are obvious: like character return or cursor right and left. Reverse on allows all subsequent characters to
be diplayed in reverse field - black on white.

The reverse key is operational on a memory basis. From time to time the key is struck, the

function is operational until it is terminated by a RETURN pressed or printed, or by pressing reverse-off
(the shifted reverse key). This concept of reversal of function, up and down, right and left is carried
through to the function keys, so that the complementary functions are usually combined, with one being
the shift of the other.

The keyboard is scanned using a 6520 PIA, a four line to ten line decoder and the interrupt

routine from the CRT controller. Each time the interrupt occurs from the CRT, the keyboard is scanned
using a left to right scan. The keyboard is organized on a 2 x 5 row matrix with the matrix

being repeated 8 times across the keyboérd. To implement noise protection and N key roll

over, the keyboard scan routine keeps the final value of the last scan in a buffer.

Until that key is released, no other keyboard scans are acknowledged unliess a later scanned key
is struck. The later scanned key is then considered to be the next key closure. The algorithm does not

11

0IY6G=9d 80¥6S=Vd sassaippe 19}sibal eleq vid
ueds pieoqAay 13d "L'¢ ainbiy

apoo9(Q pieoghay

12

(= \ -
. |[FEEE EEEECEEEEE
EeEE |0eREEREEGEE
wrlEeEE |TerEEEREEEE
= EEeR PEREEEEEREE

LeELE ELEUENEOEME

|

R

Lad o8d Std vEed €9d aad Lad oad

give classical N key roll over but does allow for legitimate rejection of noise and trapping of the keys
in the order that they are struck.

The keyboard is left scanning the last row, which contains the stop key. This allows the routine in
BASIC, that checks for the stop key to sample the input /O device, without having to perform any

of the normal functions of scanning. The user can take advantage of this by reading the input character
for that row.

The shift key is a special multiple key closure and is treated separately. If either of the two shift keys
is pressed, the software sets a special shift switch which is used to change the decode of the key.

All key closures are translated using a ROM-based look-up table for the key. The shift key is encoded into
bit 8 of the ASCII character which is then translated into the screen representation in the standard way.

Once the hardware translation is done, the encoded value is transferred into a 10 character keyboard
queue. The keyboard queue is loaded every time a new key closure is sensed and is unloaded as soon as
characters can be transferred to the screen.

This input queue is scanned by the GET routine directly to allow input without going to the screen. The
input stack may be scanned by a user program. The user program can look at the pointer at location 525
to determine whether or not it is greater than zero; if it is, that means that there is data in the keyboard -
queue. The keyboard queue is located at 527-536. The first character may be taken out; all subsequent
characters moved down, and a load index pointer decremented by one.

This is a dangerous routine, unless written in a machine language with the interrupt masked, because a
new key closure could store a new value during a time that you are scanning and changing the queue.
Both the GET and keyboard input routine take care of that automatically by only operating during the
interrupt or with the interrupt masked.

Whenever the screen editor routine is operational, a special two-level operating system is in play. The
first level enables the cursor to flash and writes data from the keyboard to screen memory at the current
cursor position. The routine then moves the cursor one character further down in memory. The process is
repeated, trying to keep th keyboard queue empty.

The second level flashes the cursor and translates and stores characters from the keyboard into the
keyboard queue. Meanwhile, the first level operating system always watches the input stream for a
carriage return. After the carriage return is printed, this routine automatically transfers the entire line to
the operating system. The rest of the operating system does not see the characters until they have been
typed and a carriage return is sent. This allows for total editing of the line, prior to handing it to the
operating system.

An interesting trick for the more advanced programmer is to use the PET to write its own programs. By
printing out a line to the screen, forcing a carriage return into the keyboard queue and then returning
control to BASIC, new line numbers may be entered into the memory. Another example of the use of the
keyboard queue is the LOAD/RUN sequence which is implemented by the keyboard scan program when a
shift-run is encountered, the routine automatically forces “LOAD, CARRIAGE RETURN, RUN CARRIAGE
RETURN? into the keyboard queue. When control is returned to the input routine, the load followed by the
run is automatically transferred in the proper order.

It should be noted that this keyboard queue is only ten characters long and if it is exceeded, dramatically
bad effects can happen to your system. The only known recovery from exceeding this queue is to power

13

the system back on and start over. When fooling with the queue, remember that if the user is typing on the
keyboard and you do not have the interrupt turned off, the operating system is going to kill you.

SCREEN EDITOR
Typing on the keyboard, while the cursor is active, transfers what is typed on the keyboard directly to

the screen. This function is like a simple computer terminal which requires you to retype a whole line
until you get it right, but the PET lets you edit your mistakes before you enter a line. The editor is best
understood with a PET to illustrate it. The user should follow discussions on his own PET, as many of the
examples are much more difficult to describe than to see.

To follow these examples, two concepts are necessary. One is that when we type a ? the BASIC operating
system is goling to interpret the ? the same as PRINT.

The second concept is that when we follow a ? by a “,all characters after the”, until the next " is en-

countered,
are treated by BASIC as characters that you will want to have printed onto the screen.

In this section you are operating the computer in what is known as a direct mode. (i.E. rather than
programming mode). BASIC is executing each instruction like print as soon as you type it into the system
and hit carriage return. We will see in the future that this is not the way most programs are operated. It
does make the machine useful as a super calculator.

The first thing that we want to do is have the machine type a simple message. You should have already
done this with your users’ guide. However, we hope by now that you understand a little better. We type
the line:

?“HI THERE”

ZVC-m>x

You will see that BASIC responds by printing HI THERE. It should be noted that each time we struck
a key on the keyboard, the cursor moved automatically one place to the right, allowing us to type in the
next character, and nothing eise happened until after the carriage return. When the carriage return
occurred, the Hl THERE appeared almost immediately on the screen.

Let us talk about the simplest function; that is, immediately correcting a mistake. Retype the line

?H!I THERE B. What we were trying to type was H! THERE PET, but we hit the character B rather than P.
For those of you who are touch typists, you may have aiready made this mistake with the PET’s close
keys. In order to allow you to immediately correct this mistake, there is a key which allows us to erase a
previously struck character. This key is called the delete key, located in the upper right-hand side of the
keyboard.

If we strike the delete key once, you will see that the B has disappeared. Typing the P results in an
overstrike of that position. We can now finish typing ET; then hit carriage return, causing the PET to print
out HI THERE PET, a blank line, and READY.

The delete key is the fundamental editing tool which allows you to strike out as many characters as you
want from where you are and then retype. This is the simplest form of editing. It is implemented by

14

decrementing the screen pointer from where you are by one and striking a blank over where the screen
pointer is. We can go back and erase the READY that is right in front of our cursor by just continuously
striking the delete key. Notice two facts as you are striking; (1) if you strike slowly, the cursor will move
one character at a time, and (2) if you strike fast, the cursor will actually move several characters
before you see it blink. This phenomenon occurs because it takes 15 times as long to blink 2 characters
as it does to overstrike one. Also, notice that the PET wraps around the screen. The screen memory is
organized so that deleting the previous character in memory moves the pointer back over that character.
Because of the fact that the characters scan from right to left in 40-column chunks, for example deleting
the character at the beginning of the line, and then striking the delete key at the beginning of the line,
deletes the 40th character of the previous line. Just keying back 40 strokes erases the READY from the
line above, however, this is a pretty slow way of editing.

There are three cursor movement keys on your PET. One key moves the cursor right or left; the second key
moves it up and down, and the third key moves it home (upper left-hand corner) and clears the screen.

CURSOR RIGHT AND LEFT
The cursor right key moves the pointer one character to the right. If we strike it now five times, you will

see that it moves us five columns over. It accomplishes this by changing the cursor pointer in memory.
The cursor left key is on the same key as the cursor right and is evoked by shifting prior to striking. If we
type that four times, you will see that now we are back one character to the right of where we started. If
we strike it two more times, it moves us around the corner of the previous line. Cursor left, of course, just
moves the cursor pointer one character less in memory. Going to the left, it moves one character at a
time. Obviously, by doing this, we are able to edit the screen. However, faster editing can often be
achieved by use of the cursor up and down keys.

CURSOR UP AND DOWN
The cursor down moves the pointer 40 columns to the right from its current position. This gives it the

same visual effect as moving it down one line on the screen. For an example, try spacing over forty
positions with the cursor right. The cursor is now on the same position on the screen, but down one line.
To cause the cursor to move up, hold down the shift key while striking the cursor up/down key once; this
gets us back to our original position.

Cursor up moves the screen memory pointer “up” 40 characters from its current position, or rather, 40
characters less in screen memory than the current position.

SCREEN EDITING
We can now use the cursor movement characters to get up in position on the second H in the HI THERE

PET message. Once you are there, you can now delete the T by striking the delete key. You will notice that
all the characters to the right of the character being deleted are moved to the left one character. You will

now see the delete is actually a matter of moving all the characters in memory left one, rather than just
substituting a blank.

INSERT/DELETE
Before analyzing insert and delete, we should be reminded that the screen memory is organized such that

any single line may consist of 40 or 80 characters. (See section on screen memory.) Insert and delete are
concerned with the characters on a line. Whenever the delete key is struck, all of the characters,
starting from the position of the cursor, to the end of the line, are automatically shifted one character to
the left, replacing the character preceding the cursor. The cursor is then moved to the position of the
replaced character.

The last character in the line is automatically blanked. Insert is the reverse of this process. If we want to

15

fix the line that we just got through taking the T out of, we need to put a T back between the blank and the
HERE. In order to do that, we have to make a space in which to type the T. To accomplish this, we strike
the shifted insert key with a single stroke. After striking T, you will note that this now creates a screen
which says HI THERE PET, with the cursor blinking over the first character of the insert. To insert more
than one character, strike the insert key more than once; this moves all the characters on the line to the
right, and the cursor points to the first character of the insert. This then allows us to insert several
characters on the line. For example, if we hit the insert key three times, type T’s until the cursor is
positioned over the H, then delete all of the extra T's; we will then see that the back and forth movement
in the line is automatically handied and we end up with a perfectly recomposed message. It should be
noted that in no time has the computer responded to these commands, other than making a change on
the screen. This is because we have not yet pressed carriage return to tell the PET that the line is
complete.

That is why we have been talking about a screen editor. All editing is accomplished between the keyboard
and the screen memory, without interfering in any way with the rest of the operating system. This allows
the user to compose perfect text and hand it to the computer without the programmer who is using the
data, whether it be BASIC or the user program, to worry about the intermediate steps of making
corrections. It is best symbolized by:

What You See Is What You Get.

LINES ON A PET SCREEN

Physically, a line on the screen consists of 40 columns of information. However, traditionally in the
computer business, many data inputs are organized for 80 column data cards and, of course, much more
data can be put into 80 columns than into 40. Therefore, although the PET screen can display only 40
characters per line, the user is given all the flexibility of an 80-column line. This is accomplished by
allowing the screen to define more than 40 characters as a line. If we move our cursor over to the
beginning of the line below HI THERE, and start typing NOW IS THE TIME FOR ALL GOOD MEN TO
COME TO THE AID OF THE PARTY, we will see that after typing the E, the space is automatically on the
next line. You will soon see the screen considers this to be an 80-coiumn line although the HI THERE PET
right above is only considered to be a 40-column line.

The thing that allows the PET to accomplish this is that internally, there is a table of pointers at the
beginning of the line. Each line has a marker that indicates whether it is the beginning of a line or a
continuation line. This pointer is kept in the negative bit position of the index pointer. Whenever a cursor
up or cursor down occurs, the editor examines the status of these line pointers in order to initialize the
PET to their proper line number. At any time while the cursor is on the screen, there is a separate value
kept which is the beginning pointer for the first complete line from which the cursor operates. The screen
position is then kept as a separate pointer telling the PET whether it is greater or less than 40 characters.
Whenever scrolling occurs, the line pointers are moved up in such a way that the concept of the first line
second line is maintained until the line disappears on the screen. This line pointer table is located in
memory locations 553-577.

Now that we understand that the PET can allow 80 columns, let us see what happens when we do the
insert at the beginning. To print this line, we have to put a ?”" at the beginning of the characters. We move
the cursor up and left, until the cursor blinks on the N of NOW. If we insert twice, we can then type a ?”
(it should be noted that this causes the characters on the line to all move to the right). If we now carriage
return, the PET prints NOW IS THE TIME on two consecutive lines, spaces a line and types READY. If we

16

go up and make a change in the middle of the line, we can see that it makes no difference where we hit
the carriage return in the line. If we space up to the word PARTY the first time that itis on the screen, now
even though the cursor is blinking on the P, a carriage return causes the entire line to be reprinted. The
basic rule is that when a carriage return is struck, regardless of where it occurs in the line, the entire line
is transferred, whether it be a 40-or 80-column line. Sophistication in using the editor will become more
apparent as you use it when writing programs.

SCROLLING

Now that we have a mixture of 40-and 80-column lines on the screen; let us investigate what happens
when we try to move the cursor off the bottom. To do this, we just cursor down until the cursor is at the
base of the screen. Hitting the next cursor down causes the entire screen to move up one line. Any time
we attempt to print past the thousandth character on the screen, the screen editor automatically moves
the entire screen up one line.

Lines move up on the screen by a one line or two line jump depending on the status of the top line on the
screen. This is accomplished in hardware by checking the top line pointer plus one. It an 80-column line
is to be scrolled off the top, the 81st character through to the thousanth character are moved to the top of
the screen memory, and the bottom 80 characters of memory are filled with blanks. If only a 40-column
line is to be moved off the top, the 41st character is moved to the first, etc., and 40 characters are blanked
at the bottom of memory. The cursor is positioned automatically in the same position at the bottom of the
screen as it was when you tried to move the cursor down; or in the case of a carriage return andlor
printing, the cursor is moved automatically to the left-hand side of the bottom line.

This process is totally automatic and is caused by attempting to print carriage return or space off the
bottom of the screen. There is no other program control over the movement. As we will see when we write
a program that causes scrolling, the scrolling speed on the PET is too fast to read. If the reverse key is
held down while printing is occurring, the scrolling will be siower by a factor of 20.

HOME AND CLEAR
Striking the home key moves the cursor to the upper left-hand corner of the screen (the first location of

the screen memory). Holding the shift key down and pressing the clear key gives you a blank screen with
the cursor blinking in the upper left-nand corner. This is accomplished by moving blanks into all thousand
screen positions and again homing the cursor. Clear or home can be given at any place on the screen.

The PET basically moves data from the keyboard to the screen and then when a carriage return is struck
moves the screen data into a program. This allows the user the flexibility of making a correction on the
screen without having any effect on the program that is going to receive the corrected version. Keys are
provided to allow movement around the screen and to insert or delete, as well as type over any character
on the screen. This allows the entire screen to act as an editing place for user-controlled input.

17

NOTES

18

Chapter 4. BEGINNING BASIC

The combination of instructions to solve a particular problem cannot be taught in a text book. it is a
creative process. Someone who knows how to use the computer uses his intuition or careful planning to
figure out instruction sequences to allow solution of his problem. All that we can cover in this book and
all the PET can be - except when it is provided with pre-programmed softrware - is a tool to use for solving
problems. This book cannot teach you to solve your particular problem. It can, however, teach you how to
use the PET as an instrument.

THE PRINT STATEMENT
A computer can calculate numbers all day but it is of no value uniess the computations can be displayed.
We will begin our discussion of BASIC with the PRINT statement for that reason.

When typing text, PRINT can be abbreviated as ?. A statement such as this:
PRINT “HELLO”
is an instruction to the computer telling it to display on the screen ail characters between the quotes - in
this case a word of greeting. On the other hand:
PRINT 1024 *8
is an instruction to print the product of 1024 muitiplied *8.

It is useful to note that BASIC allows you to print more than one value at a given time. Rather than having
it write a line, print ‘A’ and on a second line print ‘B, it is possible to write the line:

PRINT 1024t 2, 1024 § 3
which will print the square of 1024, a few spaces, and then the cube of 1024. Details of the exact format is
contained in the next section. The point here is that you can print as many values across a series of lines
as you can write down.

Unless the computer has been instructed otherwise by means of CMD command, all print outputs are
directed to the built-in screen. The characters are printed in the next available print position on the
screen, under the control of BASIC and an editor which is keeping track of the screen position. Although
the physical representation on the screen is 25 lines by 40 characters, the printing of up to 80 characters
is accomplished by the screen automatically folding over the 41st character onto the next line. The
computer automatically scrolls the screen up one or two full lines when it reaches the one-thousandth
character on the screen.

The command PRINT has two major forms under the control of BASIC. (1) The standard print single
character which allows for printing the field specified after the print statement has ended in the form
print variable. If the data is presented in this form, the field is printed starting at the current screen
position and followed by a carriage return. (2) Data presented in the form PRINT A, B, then BASIC
automatically tabulates printing ‘A’ starting at the current screen position then spacing over 10
characters, prints ‘B’ followed by a carriage return. In order to cause BASIC to not send the carriage
return after B, a ; (semicolon)is used. PRINT A;B; results in the ‘A’ being printed, then followed by no
extra spaces, variable ‘B’ is printed. The cursor is left at the end of the ‘B’ field. If the variable Ais more
than seven characters, ‘B’ will be printed after spating 20 characters,when using PRINT A,B.

BASIC obeys the following roles for printing characters. When the field to be printed is a string, there are
no leading or trailing characters sent. If the field to be printed is a number, BASIC first checks its size.
If the number is less than .01 or greater than or equal to 999999999.2, BASIC prints it using scientific

notation. For example, .0034 is printed as 3.4 E-03 and - 1234567890.5 is printed as — 1.2345678E + 09. If
the number falls between these values, the most significant 9 digits are printed, plus a decimal point if

19

needed. Trailing zeroes after the decimal point are not printed. BASIC always prints a skip character after
a number (unless it is printed as a string).

It should be noted that in order to take full advantage of the PET’s ability to compose text material on the
screen, unlike most BASICs, the apparent space between fields is always a skip (cursor right) character in
the PET, which causes the screen to advance the screen pointer by one character; it does not result in any
of the data screen being covered.

Because the PET allows the inclusion of all cursor positioning as literal characters within a string, the
programmer has full control of the screen print position. The cursor control characters available to use
as literals are clear screen, home cursor, cursor right, left, up and down. By use of these literals, one can
compose fields of any length and in any size starting in any one of the 1,000 character positions
displayable on the PET screen.

We previously discussed how the PET screen memory consists of a thousand characters of storage
located at memory location 8000 hexa-decimal. Characters are represented in screen memory in six bit
ASCIi code, concatenated with two additional bits. One of these bits is a reverse field and the second one
is the upper-lower case bit.

When printing to the screen, the print subroutine in the operating system automatically translates ASCII
characters into the screen memory form. The various screen control characters are simply movement
characters for the screen printer. The home character moves the printer pointer to the beginning of the
screen. The clear character moves the printer pointer to the beginning of the screen, and inserts the
representation for blank in all of the 1000 characters on the screen.

In BASIC, numbers are represented as 5-byte binary quantities, except in the special case of integers,
which are represented in two bytes. As far as printing is concerned, BASIC prints integers the same as it
does floating point numbers. In fact, BASIC automatically converts integers to floating point and then the
floating point print routine converts the floating point numbers into printable characters.

VARIABLES
We have already seen that the PET can be used as a large calculator which performs mathematical

functions and then can print the results. However, in many cases, programming consists of developing
intermediate values or performing operations until something equals a certain value. In order to
implement programming at any level, we need to establish the use of functions which can have a variety
of values at any one time. A function that can have any value is defined in both algebra and in
programming as a variable. If you are not familiar with the concept of a variable through mathematics;
then a book on beginning algebra, or perhaps one of the very rudimentary texts on BASIC might help you.
All of our discussions after this will concern themselves with the use of variables.

In BASIC, variables are defined by two character alpha numerics. If the variable is a numeric variable then
it has no trailing character. The character A is considered to be the variable A. Characters AAis a
different variable. Characters A1 is a third variable, but all three are defined as numeric values. If the
variable contains alphanumeric data, it is defined as a string. A string variable now ends with a $. Thus,
A and A% are numeric and string values respectively and are different variables. AAS, likewise, is different
from AA, etc. BASIC distinguishes a variable by the fact that the first character is always an
alphabetic character. The second character may be either numeric or alphabetic. An integer variable
ends with %, e.g.A%.

ARRAYS
Arrays is the fourth type of variable which can be defined in BASIC. Arrays are differentiated by the

20

parentheses which follow them. Parentheses define the particular value within an array which is to be
used in an expression.

A(0,1) refers to the first character in the second row of a two-column array and is different from A, A$ and
A%. All may be specified in the same program. Specific definitions and memory allocation techniques
for each of the types of variables follows, but first let us address some examples of how one uses

a variable.

Equal is used in two ways: If encountered in an IF-THEN type of statement, equal means the standard
mathematical function: the value to the left of the expression is compared and must equal the value of
the right. Otherwise, when following a variable such as in the expression A=2+2, = means replace the
value in A with the resuitant of the expression to the right.

Originally BASIC required the word LET before any variable assignment, but in PET the LET is optional
and may be omitted. A =21is equivalent to LET A= 2. The command CLR sets ali variables in PET to zero.
To understand how variables operate in BASIC, try the following examples on your PET. Remember to
press RETURN after each command you enter.

CLR
?A
PET prints 0.
Now type
A=2+2
?2A
This time PET prints 4.
Now type
7B
PET prints 0.
Now replace the value of B with twice the value in A, by typing
B=2A
7B
PET prints 8.
Now change the value of A by typing
A=2+3
?2A
PET prints 5. If you now type
7B

PET prints 8, the same value as before. Until we give a new expression for B or re-execute the one which
says B =2"A, the value of B will remain 8.

FLOATING POINT VARIABLES

BASIC always assumes operation, or operates totally, in floating point arithmetic. Therefore, each normal
variable is assigned space in memory for a standard floating point number.

Four bytes contain a binary representation of that precision. It gives us the capability of specifying about
9 digits precision of a decimal number. Accuracy of most calculations is limited to this representation.
Each variable is also assigned a 1-byte exponent limited to having a maximum value of +33. Exponents
less thgan — 34 yield numbers too small to distinguish from zero.

STRING VARIABLES

A string variable can contain a function, whether it be a number, graphics character, or standard ASCII
character. There is a specific set of variables that allow extraction and packing of data into strings which

21

will be discussed later on. The string is limited to the 80 characters of the input buffer. There is a specific
set of functions that allow the construction of strings up to 255 characters (see later text).

INTEGERS
As we have indicated, an integer is simply a whole number. Floating point variables are stored in BASIC

with five bytes; one for the exponent and four for the mantissa, which gives an accuracy of 9 digits. In
many cases, variables can be expressed in much simpler numbers. In order to allow the user most
memory efficiency, particularly in the case of arrays which can take significant amounts of memory, the
PET has implemented the concept of storing certain numbers as two-byte integer values. Any integer
value between minus 32,767 to plus 32,767 may be stored in the form of a two-byte number with the
highest bit of the number containing the sign.

USE OF PROGRAM AND DIRECT STATEMENTS

Throughout the text, until now, we have been using the program technique which allowed us to get the
PET to respond directly to the print statement. In this case, BASIC is obeying the command we are giving
it directly, as we type it from the keyboard and hit carriage return. This is so-called direct mode. In this
mode, we can use the PET as a super calculator. For instance, if we want the PET to add two numbers and
divide the result by a third, we can ask it the question ?(2 + 8)/5. If you have typed that on the PET, you
should get the answer of 2 followed by a READY. The PET will obey any statement given it from the
keyboard, except when it is in the process of executing a BASIC program. In addition to using it as a
super calculator and for teaching with the PET, the direct mode is quite useful for debugging of
computer programs. Variables can be assigned intermediate values and then small sections of the
program can be executed with GOTO statements to assess why any particular piece of code is not
working correctly. Break points can be put in programs and current status of variables checked with print
commands, again in direct mode, without having to modify your main program. However, except for
debugging or in the case of using the PET as a super calculator, in order to get the computer to act as a
true computing element, one has to write or load a BASIC program. The difference between execution in
direct mode and a program is that several statements can be grouped together in logical order and then
BASIC will execute all of the statements before asking the user for control.

Suppose we want BASIC to print our HI THERE message vertically as opposed to horizontally. We can
easily accomplish this in a program but not very easily in a direct statement. Rules for program entry are
very simple. Any statement you want to be treated by BASIC as a program statement must be preceded
by a line number. A line number may be any number from 0 to 63,999.

A good habit to develop when typing in lines of a program is to use increnments of 10 or 100. Instead of
1, 2, 3, etc., use 10, 20, 30. This will give you space later to add lines and make corrections in your
program. All you need to remember is that BASIC interprets each line number in order.

To print HI THERE, vertically, each line of our program will type one letter of the message. we are going

to start with line 10 and make each line a multiple of 10.

10?7“H”
20?("7)

3074T”
407°H”
507"E”
607°R”
70?£‘E’1

Whether you are typing in a program or giving direct commands like RUN, you have got to hit RETURN to
tell the PET to take a look at what you have typed and act accordingly. The lines ten through seventy

22

constitute a program which tells the PET to print out Hl THERE.
The program is now resident in memory. To execute the program, type RUN. This gives us the HI THERE
printed in the vertical format:

mImMI—+A—-—T

You will note that we do not have a space between the | and T. One of the reasons we use the numbers in
the multiple of ten is that we can now insert a correction between lines 20 and 30. First, display the
program by typing LIST. This gives us the program printed as follows:

10?7 PRINT “H”
20?7 PRINT “1”

307 PRINT “T”
40?7 PRINT “H”
507 PRINT “E”
607 PRINT “R”
707 PRINT “E”

Now type:
25?(‘!7

Press return and relist the program, and we will see that line 25is inserted between lines 20 and 30. If we
run the program now, we get:

H
!

mImI -

This example demonstrates the use of line numbers and the ability to insert lines numbers to make a
correction in a program.

There is another way to get the same effect. First delete the space by typing 25 followed by a carriage
return. Then list the program and see that line 25 has been deleted. Now position the cursor on the space
following the | on line 20, and insert a cursor down. First by hitting the insert key, and then the cursor
down key, if you don't hit the insert key first, the cursor will move down immediately. But because you
inserted the cursor-down (it looks like a reverse field Q), the cursor will not move until instruction 20 is
executed. Do not farget to hold down shift before striking insert.

When we now run the program, you see this also gives you the effect if a space on the next line. This
would not always be true, except we had been cheating and using the automatic scrolling capability of
the PET which clears out the field. Had we programmed a home prior to printing a program, we would not
have received such a nice result. Try programming a home 5?“HOME”, then try a clear 5?*CLEAR”.

The screen editor will allow you to take a program and make changes on any of the lines you display on
the screen. The list command has several features to help you get the right lines to the screen to edit. List
takes programs and prints the contents of the basic program which is stored in memory. The command
L-I-S-T starts at the first line number in memory and lists to the screen device all the instructions to the

23

end. The longer programs features of list which allow you to list only a single line number LIST 20 which
lists just line 20, LIST 10-50 which lists lines 10 through 50 included, LIST-50 which means list all the
numbers from the beginning of the program through line 50 included, and LIST 50- which lists all of the
lines from line 50 to the end of the program. Some combination of the above can be used to find and
correct any piece of program which is currently stored in memory. Try each of the above commands on
your PET just to see what they do with our little program.

BASIC is an interpretive language related to the direct commands we are executing. BASIC executes a
command by taking the last line typed to it and analyzing the line working from left to right looking for key
words and expressions which it recognizes. Every time it encounters a key word such as PRINT (or ?
which is the token for PRINT), it interprets this word into a command which means something to BASIC.
Command words are stored in memory with bit 8 on to tell BASIC that it is a command word, or key word.
As a program line is entered into RAM memory through the use of the carriage return, BASIC takes the
line number and searches through memory, until it finds the same number, or the number just greater. If
it is the same line number, then the entire line in memory is deleted and a new line is inserted in memory.
In the pre-interpreted state all the key words are replaced with the single character token for the key word.
This allows the interpreter to store commands in the most memory-efficient form. The only data stored
is the data typed in by the programmer such as literals, pointers to the variables, and the keywords.
PRINT, even though it takes five characters to type, only takes one character in memory.

BASIC is called an interpreter because the actual execution of the instructions is done by analyzing the
keyword that needs to be executed in the program line, then executing that keyword under the control of
a series of subroutines. This is a trade-off which results in very memory-efficient storage programs but
longer execution times than would be true of a machine ianguage program. Because PET BASIC uses
tokens in memory and stores them on /O devices whenever a program is loaded and saved, the actual
coding of data on tape or in memory is not transferable to other machines. It is generaily not possible to
use BASIC instructions typed in from other machines.

When you create a BASIC program you are operating under two levels of editor: the screen character
editor and the BASIC line editor. The screen editor allows you to change characters within a line until the
carriage return transfers it to main memory. The BASIC line editor allows you to add new lines and modify
and delete old lines.

To delete a line, you type the line number immediately followed by a carriage return. To modify a line,
list it first on the screen and alter it then type a carriage return to re-enter it. To replace a line, enter the
same line number with new text and type carriage return.

There are two ways to execute a BASIC program. The first of these is to type RUN. The command RUN
first clears all the program variables and initializes the program pointers. Then it executes each
instruction of the program in order, starting at the lowest number. Execution continues until there are no
more instructions, and END is encountered, or the stop key is pressed. RUN may have as an argument the
number of the first instruction to be executed. For example, if you type RUN30, our sample program will
print THERE instead of HI THERE. RUN is executed in direct mode. A GOTO statement, also executed in
direct mode, operates the same as RUN except that none of the variables are re-initialized. The GOTO, of
course, must specify the line number of the first statement to be executed, e.g. GOTO 30.

LITERALS
In our Hl THERE examples we have used PRINT commands with characters to be printed enclosed in

quotes. In the PET these are called literal strings. Data is also kept in the PET in binary floating-point

24

numbers. Much of the data you want to work with in programs is not numeric but alphanumeric -- the way
we talk back and forth as human beings.

These characters are specified to the PET with literal strings. More specifically a literal is any value
contained within a set of quotes.

To allow the maximum composition of screen data, the PET has a special set of graphics characters and
the ability to store and execute cursor control characters which are fed to it by means of literals or other
more sophisticated techniques.

We have already discussed in a section on PET keyboard input how the PET stores its data in ASCII.
Graphics characters are stored as an extension to this set. Graphics are produced by shifting from the
original 64 character set and they are stored in memory with a special indicator to differentiate them from
the lower characters on the keys. A literal can be used to draw a line just as easily as it can be used to
print HI THERE.

Any combination of characters within the PET keyboard may be typed in as a literal and this includes all
cursor movement and the reverse field. PET has a special mode in the screen editor which assumes that
you are typing in a literal whenever a quotation mark is typed. From the time that the first quotation mark
is typed until the time that a closing quotation mark is entered, all characters are transferred directly to
the screen in a format so that the software which transfers the input line to BASIC will transfer them as
control characters if that is appropriate.

You can see the cursor movement characters flagged with reverse field within a literal. Type a singie
quote and see this happen. Reverse field looks like an “R”. Home is an “S” and clear is a shifted “S” or
heart. Cursor down is a “Q” and cursor up is the shifted “Q” or hole character. Cursor right is a right
bracket and cursor left is the shift of that character and looks like a vertical line through the 5th column of
dots. Insert is a shifted “T” which looks like a second vertical line.

You cannot enter a character in reverse field into a literal but you can turn on reverse field with the control
character before your character is printed. The only characters that are allowed to appear in reverse field
between quotes are those which are interpretted as control characters.

Delete is the only editing character that will still work within a literal. Once an odd number of quotes has
been typed on a line, you lose the ability to move the cursor about the screen until either a closing quote
or a carriage return is typed.

You should note at least one time while you are editing that you have fallen into the aforementioned trap
of trying to move the cursor after a quote has been typed. Either type a phoney closing quote or a carriage
return, then cursor up to edit your mistake.

Another method of inserting cursor control characters into already existing text is to use the insert
function. It has the same effect as an opening quote. For example, if you type insert three times and then
try to do a cursor movement, the control characters will be flagged with reverse field just as before. This
mode is easy to get out of because you need only enter as many new characters as the number of times
you struck the insert function. It is suggested that you make up your own examples to play with this.
Examples may also be suggested to you as you make a few editing mistakes.

The ability to readily manipulate the graphics and the cursor movement characters can allow whatever
depth of graphical capability you have the time and patience to program. The computer should be fun. We
recommend that you develop your own programming skills with the text and contionually experiment

with the use of imbedded graphics and cursor movement characters. Remember that you cannot hurt the

25

machine - the worst that can happen is that you clear the screen accidently after typing in a bunch of
stuff.

REVERSE FIELD

We have shown in the examples of quote mode and insert how once a mode has been established for a
line, the PET wili continue with that function until it is either cancelled by a new control character or a
carriage return. Reverse field works in the same way. It remains in effect until a reverse field off character
is typed or a carriage return is entered.

As described in a previous section on screen memory, reverse field characters are stored with a special
bit on to indicate the black spots in the characters coming from ROM will be all white and all the white
spots will be black. As you will see when you type an example, this gives a very desirable highlighting
effect and doubles the number of potential characters which the PET can display. This feature is so
useful that it is not only implemented on the PET display but in some of the PET hard copy printers
as well.

Here is an example of how reverse field works: Clear the screen and type -Hl (space). Next hit reverse
field on and type THERE .Finally type reverse field off, (shifted reverse field on), type (space), PET.
This gives us a line in which we have highlighted THERE.

Reverse field remains on from the first time the control character is typed and all characters
subsequently typed on the screen will be printed in reverse field until the mode is terminated as we
previously mentioned. This applies equally to keyboard input as well as characters printed from a literal
string.

To get the PET to type out in reverse field we use a literal with the control character for reverse-field-on
inserted. TYPE ?*°HI (reverse field on) THERE (reverse field off) PET”". Note that the reverse field on and off
characters occupy a space on the screen when programming and that they appear in reverse field, but the
THERE is not in reverse field yet. The effect of the quote is to postpone the action of a control character
until the literal is interpreted. Since the reverse field is turned on by setting a bit of each character in
screen memory, a screen position is not required for reverse field on or off when the stream of characters
is received by the program which prints it on the screen. Reverse field remains on until a reverse field off
character or a carriage return is typed.

TERMS AND OPERATORS

The communication with BASIC is either with numbers or with alphanumeric literals. Numbers are always
presented in decimal form even though the microprocessor in the PET operates in binary mode. In order
to keep the two straight, PET will assume that whenever we are talking about a number, we are
representing it in decimal form. Later when we talk about hexadecimal numbers, they will always be
preceded by a $--e.g. $00 10 is equal to 16.

As BASIC recieves lines, the interpreter divides the characters it sees into several classes. Such as
commands, functions and operators. PRINT is a command to BASIC with a specific function that PET can
perform.

A function can be something like square root or a variable, or a special function. Whenever you type I on
the keyboard, you get a constant of 3.14159265, which can be used in an expression.

An operator is a character that is interpreted by BASIC as an arithmetic function which is to be performed
in evaluating an expression. The following set of operators are defined for BASIC:

Plus sign (+) causes two values to be added together using floating point representation with the results

26

being calculated in a floating point accumulator. The accuracy is limited to 9 significant digits. Minus
subtracts the value to the right of the minus from the value to the left of the minus sign.

* is the BASIC multiply. The value to the right of the multiply is multiplied by the value to the left.

| is BASIC’s divide. All the numbers to the right of the slash are divided into the expression to the left of
the slash.

* means exponentiation. All the values to the left of t are raised to power of the value on the right.

Open and close parentheses cause values inside them to be single expressions. All expressions inside
parentheses are evaluated as a single value. Parentheses may be nested and are evaluated outward,
starting from the innermost set of parentheses. in order of precedence, the memory aid “My Dear Aunt
Sally” will help you remember the precedence of operators Multiplication first, then Division, Addition,
Subtration. Expressions within parentheses are evaluated first starting from the innermost set of
parentheses. The following set of exampies should be tried on your PET to show the operation of the
operators and their precedence.

Addition
7242

Subtraction
24-2

Multiplication
76%2

Division

?12/2

Use of Parenthesis

?4+8/2
?(4+8)2

Order of Operations
?2(2+4*8-4)2)*3

FUNCTIONS

There are three functions which are available in BASIC which are, at the time of writing, unique to the
PET. The first of these isTT: Whenever this character is used in an expression, BASIC translates it from the
keyboard character of TT to the value of 3.14159265 etc. It can be used anywhere in any expression and will
always be evaluated as this number. Example: ?11L.

TI$ and the value Tl are two ways to communicate with the real time clock within BASIC. As previously
indicated, every time a screen refresh occurs, (1/60th of a second), a value within the PET is updated. This
value is measured as a 24-hour real-time clock. It is available to the programmer in its binary form by the
expression Tl, which gives the value the current number that BASIC is keeping. This number is kept as a
three byte binary number whose value is stated in numbers of 60ths of a second, or so called jiffies. To
evaluate the amount of time that a particular operation has taken, Tl can be stored in a variable at the
beginning of the sequence and then the difference calculated by subtracting that variable from the Tl at
the end. This function is accurate to 1/60 of a second.

TI$ presents and accepts data in the form of hours, minutes,and seconds. When the expression Ti$ is
used, it always presents data in string form with two characters for hours, two characters for minutes,
and two characters for seconds. The value of time in the computer is kept in a 24-hour clock. If it is ten

27

minutes past 1 p.m. in the afternoon, TI$ would be printed as 131000. To set the value of the real time
clock, type the expression TI$ = with the number being typed in quotes in 24-hour time. For example, to
set the clock to 2:45 and 30 seconds in the afternoon, type TI$="144530".

As a personal experience, you should set the value TI$ = to the right time now and after you have done
some additional reading, go back and print it. As with all the other variables, the power-on sequence to
the computer zeros the real time clock.

Care must be taken in use of the value Tl. Remember that the expression Tl automatically goes back to
zero at midnight. One of the authors wrote a loop in a program for graphics display where the program is
waited until the variable Tl is greater than a constant and the value of T1 when the display is put on the
screen. This expression never reached the computed value as Tl goes through midnight. The only way to
compensate for this is to watch for when the time might go through midnight, and readjust the stored
value when it might.

Functions are preprogrammed capabilities of BASIC which can be treated as a single value. Functions
range anywhere from n, which i 5 a predefined function, to sine, which is a capability of BASIC to
compute the sine of a number. When BASIC encounters the code for function, it evaluates the expression
for the function, calculates the resulting value, and uses the value in the command. The use is really quite
simple. If A equals sine of n radians, the expression would be written:

A = SIN{n)

In this statement, we are actually using two functions, n, and sine; BASIC would evaluate this expression
by expanding the value of m, evaluating the function sine and finally storing the result in the variable
space for A. In the expression:

A =2*SIN(n)
after the sine is computed, it is multiplied by 2 and stored in A.

The trigonometric functions, sine, cosine, tangent and arc tangent are all available in PET BASIC. The
expressions for SIN, COS, TAN all have as their only argument an angle given in radians. To convert from
degrees to radians, multiply the number of degrees by n/180. For example:
?SIN(90*n/180)
calculates Sin of 90 degree. To obtain the cosine of 45 degrees:
PRINT COS (45*n/180)

To compute the tangent of 40 degrees. For example:
?TAN (40*n/180)

Each of these functions are computed by tables. Because n is limited to 9 significant digits, in general,
values should be less than 1000 degrees or 6.

The accuracy of BASIC functions is five parts in ter to the tenth as long as the argument is below 20
radians. Expressions which use the values in radians are a function of the value of n which is accurate
only to ten to the ninth. Arc tangent is the only inverse trigonometric function specified as a function in
BASIC. The function arc tangent computes the value in radians of the expression given on the argument.
Answers are always given between plus or minus 17. The accuracy is 5 parts in 10'°. In normal use the
result is in radians.

?ATN(.5)

To convert the number to degrees use the following example:
?2180/n* ATN(.5)

28

The following general expressions can be used to compute the value of arc sine and arc cosine as a
function of arc tangent.
ARC SIN (X) = ATN(X/SQR(—X*X +1)
ARC COS (X)= —ATN(X/ISQR(—X*X +1)+1.5708

Both the above expressions give the results in radians to be converted to degrees by multiplying the total
expression by 180/x. (It should be noted that in both the expressions there is a possibility of performing a
division by zero which will result in a basic error. Before using the expression, the arc cosine should be
checked for zero and before using the expression arc sine, X should be checked for it being equal to the
value of one.

MATHEMATICAL FUNCTIONS
The largest legal number that BASIC can handle is = 1.70141183 E + 38. Any larger number gives an

?overflow error. The smallest magnitude that can be distinguished from 0 is 2.93873588 E — 39. Any
smaller
number will result in an underflow.
ABS
Absolute value is specified in the form ABS(X). The function returns the value of the expression as a
positive number. There is no inherent accuracy loss. For example:

PRINT ABS(— 145).

INT
This expression basically rounds the current value of the parameter to the next lowest integer.

For example:

INT(.23) =0
INT(-2.5)= -3
INT(1.79) =1

Other than the inherent inaccuracy of dropping significant digits, this expression introduces no
additional inaccuracy. However, small inaccuracies in the argument could cause problems. For example,
the number four might, in fact, be stored in BASIC as 3.99999999. When this number is used in the
argument for an integer, the result is 3, not 4.

SGN
This expression returns a 1 if the sign of the number is greater than zero, a zero if the value is zero, and a
—1if the sign is negative. For example:

?SGN(—45)

-1

?SGN(+ 10)

1

SQR
This function calculates the square root of any number greater than zero. If a minus number is used, the
result is an ?ILLEGAL QUANTITY ERROR. Accuracy of the expression is 5 parts in 10 to the tenth for the
entire range.

?SQR(16)

The following two functions send themselves with natural algorithms. The algorithms are base E which
is 2.71828183.

EXPONENT
The parameter defines the power to which the base E is raised. The limit of the parameter is 88.02969189.

29

A number greater than that will result in an overflow. A form of the expression is EXP(X). Aithough the PET
only allows the flow function for E, other functions are available by ratioing to the Log:
7EXP(1)

Basic logrithmic function is given with the parameter LOG(X) which is logged to base E.
To calculate the LOG to base 10, the expression is written:

LOG(X)LOG(10)
RANDOM
The random functions are useful for many statistical programs and games. Basic random functions are
provided. The random number generator uses an algorithm which develops a value between zero and one.
The argument can be either non-zero, or negative. Positive numbers always return the next value of the
random number sequence generated by a numerical algorithm in BASIC. It always starts with the same
value, or seed power-on. However, the seed for the random can be initialized by using the minus value.
Repetitive access to the random function in a program is not random because the relationship of the time
is predictable from the time that the program is initialized. So in a fixed program sequence, the only truly
random number is the first one. A solution to this is to use the time to generate random seed, use the
RND(- TI) to seed a number sequence, and use RND(+ 1) for the numbers in the sequence. This should
give a close to theorhetically pure random number for statistical analysis and definitely gives a random
sequence for game play.

The RND of a minus number is not truly random at all. The parameter is passed as a seed to the random
number generation sequence. This technique can be used in debugging programs in a sense that a
predictable repeatable sequence can be obtained by RND minus for program development. Suppose ina
game program you want to simulate rolling a six-headed die. Initially, you can see the random number
generator with the instruction
D=RND(-TI)

Subsequently, you can compute the value of the die with

D =INT(6*RND(1)+ 1)

PEEK, POKE:
PEEK is a function which allows the user to look at any location in the PET memory. The parameter

contains the memory address in decimal in the PET which to want to look at the result is a decimal
number between 0 and 255. BASIC is currently constructed so that the contents of any address greater
than hexadecimal CO00 is automatically returned as zero. This is a legal constraint, posed by the
company who wrote the BASIC software to protect their copyright.

Example: To look at memory location 25, the expression is written:
?PEEK(25)

POKE
POKE is not a function but is written like a command. It allows the user to deposit a number into I/O or

read/write memory. The parameters are specified in a list after the command. The first parameter is the
memory address of where to put the information. It may range from 0 to 65536. The second parameter is
the actual value to be deposited. It must be between 0 and 255. For example, if we wanted to put the
character A at the first location of the screen memory we would write

POKE 32768,1

Some locations in memory cannot be changed (ROM) and others should not be changed (BASIC and
system variable RAM or V/O). If you POKE the latter, be prepared to reset your machine.

30

USR
The USR is a function which is designed to pass a parameter to a lanuage program using the jump

address located at memory location one and two in the PET. See the section on machine language
programming for a detailed description and use of this function.
FRE
This function tells you how many bytes are left in memory. Although it is a true function since it can be
used in an expression, it is normally used in direct mode in the form:

?FRE(0)
FRE forces a BASIC action called garbage collection. This consolidates all unused bytes into one large
block so that they can be efficiently allocated.
Several functions exist to aid in formatting data when it is printed on the screen or hardcopy printer.
TAB
This format function places the cursor at the column specified in the argument. The argument goes
through the INT routine. The iegal range is 0<X<255. If the cursor is past the location specified, the tab is
ignored. Note: TAB uses skip characters, not spaces.
POS
This function returns the position of the cursor. The position is reset to zero at each carriage return.
Note: HOME and CLEAR do not affect POS even though the cursor is set to the first column.
SPC
This format function prints out the number of skips specified in the argument (which goes through INT).
Legal range is 0<X<255. Note: SPC(O) put 256 skips.

NOTES

31

Chapter 5. ELEMENTARY PROGRAMMING

Use of decision logic in writing programs.

A major advance in BASIC programming is the ability to loop back and re-execute lines of a program. It
may be done in two ways -- unconditionally with a GOTO and conditionally with an IF-THEN.
GOTO is written to specily a target line number where execution will always branch. GOTO may also be
written with a space between GO and TO. PET BASIC will recognize both forms.
GO TO 50
GOTO 100
IF-THEN has three forms:
IF (condition) THEN (statement)
IF (condition) GOTO (line number)
IF (condition) THEN (line number)
Conditions are written as two arithmetic expressions separated by a relational operator. PET BASIC
provides six relational operators: <, >, =,< >, <=,>=.

Until now we have been developing programs which do single functions in serial order. You should be
familiar with the concept that says that first line 10 is executed, then line 20, and other line numbers in
ascending order.

If we wanted to take and print numbers betwenn 1 and 20, their square and square root values on the
screen, we could write the linear program as before:

10 PRINT 1,11
20 PRINT 2,2*2, SQR(2)
30 PRINT 3,3*3, SQR(3)

The big disadvantage of this is that we would have to keep typing in lines until the 20th line.
200 PRINT 20,20*20, SQR(20)
UNCONDITIONAL LOOPING
However, with our concepts of variables and the addition of a loop, we can write a program that
computes values and prints them out without having to type such a long program.
The program reads as follows:
10 PRINT “VALUE”,“SQUARE”, SQUARE ROOT"

Line 10 prints a heading for the column of numbers. It is executed only once.

201=1+1
Line 20 computes the next number to use. The first time this line is executed, | has
never been referenced so it has an initial value of 0.
30 PRINT LI*I, SQR ()

Line 30 is like lines 10-200 of the previous program except that the constants have been replaced by a
variable.
40 GOTO 20

Line 40 contains a GOTO command which directs execution back to start again at line 20.

BASIC stores text lines so that a pointer to the next line precedes each line. Using this technique, the
interpreter can quickly examine only the line numbers, determine if a line does exist, and transfer
execution to that line.

GOTO is not limited to branching to a lesser line number but it can branch to a greater number too. You

32

will see a future example of the concept of using GOTO to skip a portion of code.

As before, we type RUN to start our program. The program will continue to print values of | until the STOP
key is pressed. Rapid scrolling of the screen memory makes the screen almost impossible to read, but
use of the reverse key slows the scrolling rate. Holding down the reverse key slows the scrolling by a

factor of 20.

To stop the loop, press the STOP key. When you want to restart a program either type CONT to cause the
program to resume where it left off or RUN to begin at the beginning.

While this program makes use of the GOTO, it does not really help us to solve the problem we tried to
address - printing just 20 numbers on the screen. However, before we address that, let us introduce a
small mistake into the program. You should see a common error and its cure. If we retype:
40 GOTO 10

and then execute, instead of printing a heading at the top of our program. We will intersperse the heading
with the computed value. Jumping to the wrong place in the program is the most common error made in
programming. Luckily it is most visible in this case. By stopping the program we can use the screen
editor to correct line 40 to go to line 20. You have now fixed the first in a long life of program bugs.

CONDITIONAL LOOPING
The IF-THEN statement allows you to specify a case to test and if the case is true, the statement after the

THEN is executed. A test is specified by putting one of six relational operators between two expressions.
= equal
<> not equal
> greater than
< less than
> = greater than or equal to
< = less than or equal to

If A<B then print “A LESS THAN B”

If the expression is true, the instructions on the same line with the IF statement are executed. If the
expression is false, the program jumps to the next numbered line. If you are in doubt about < and > and
what they mean, remember that the arrow points to the value you would like to see less than the other.
In ourexample, we can add the statement:

40 IF 1 < =20 THEN GOTO 20

The IF-THEN lets us make a variety of decisions at the time we are executing the program. This allows us
to limit the program and cause actions to happen. In this case, we execute the program from 1to 20 and
then finally drop through the instruction.

We can also write the tF statement to skip around the unconditional GOTO. Add two new lines and
restore line 40:

351F =20 GOTO 50
40 GOTO 20
50 END

The program will execute through 20 vaiues and when | is equal to 20, go to the END statement.

Most BASIC interpreters required you to include an END statement to finish your program. This is a
vestige of when BASIC operated non-interactively from cards. END can be used optionally in PET BASIC
to force program execution to end at a specific point.

IF-THEN instructions have three forms: The first is IF expression GOTO line number. The second is
IF-THEN line number where GOTO is implied. The third form is IF expression THEN followed by a

33

statement to be executed before proceeding to the next line. Expressions in this form might change our
table to draw a line between the 10th and 11th value on the screen.
321F =10 THEN PRINT ”

If we try to execute this, you will see that a line is now drawn between the tenth and eleventh value on the
screen because of the statement at line 32. It should be noted that the logical conditions of the IF and
IF-THEN are only two; either the next line is executed, or the THEN statement is executed. Take care
when placing additional programming statements on the line. For example, in:
IFX=5THEN 50:Z=A

the Z would not be executed, because the line either drops through or executes statement
50. However, in

IF X=5THEN PRINT X:Z=A
the PRINT X and Z = A will be executed if X=5.

The IF-THEN lets us make a variety of decisions at the time we are executing the program. This aliows us
to limit the program and cause actions to happen at various points. It is the concept of the unconditional
jump plus the concept of testing values that allows the computer to be used as both control element and
legitimate computing element. The intalligent combination of logical decisions with repetitive operations
makes a program really work.

DATA ENTRY

Before a computer program can perform useful work, it has to be able to access a data base of some sort.
The program could require only simple data such as YES or NO responses to a game or simulation. A
more complex payroll program might need rates, hours, and tax information. In PET BASIC there are two
ways to get information into variables.

READ AND DATA STATEMENTS
Only a short time ago when there were no timeshare systems, BASIC could not accept input other than

cards included with the program. Thus, DATA statements were typed and scattered throughout the
program. The command READ was designed to pull out this DATA into variables which could be used by
the program.

When BASIC began running in an interactive environment through timeshare, verbs such as INPUT and
GET allowed direct communication with the BASIC program. READ has been relegated to inputting
parameters that change but not as often -- e.g. tables, etc.

The syntax of READ is the verb followed by a list of variables into which the DATA is to be read.
READ A, B, C, D

READ processes DATA statements as they are encountered in the program. DATA statements at line 10
and 30 might be processed by a READ statement at line 20. DATA is processed sequentially and commas
and end of lines are considered terminators

10 DATA 2, —53, IE10

20 READ AB

30 DATA 3.14, 1,06E23

Blanks and graphic characters are automatically thrown away uniess they are surrounded by quotes. The
quotes are considered to be delimiters for literal characters.
String data can be typed without quotes if it does not contain literals.

50 DATA ABC, DEF

34

Commas within quotes will not be treated by BASIC as field terminators.
60 DATA “ "

It is also possible to type mixed alphanumeric and data fields. Numeric fields may be treated as alpha.
10 DATA 123, ABC, 345
20 READ A, A%, B

It is adviseable for the programmer to know how many data statements he has put into the machine or

use some kind of a delimeter at the end of the data. If it is not done, the data is continuously read, and the

program will index its way through all of the data statements. Finally, DATA will be exhausted and when
the next READ is encountered an ?0UT OF DATA ERROR

will occur. Sometimes you may also see this error if you carriage return through READY on the screen

because the PET thinks you already told it to READ Y.

SYNTAX error results when an attempt to read alpha field into a numeric variable is made.

READ and DATA are implemented in the following manner: The first byte of text contains a zero. This is
really not part of the first line but is a dummy line consisting only of a terminator. When RUN is typed, a
data statement poin:er is directed to this byte. Since it is pointing to a terminator, the first READ
command initiates a search for a DATA statement token.

There is one other command available to the programmer which allows him to reuse the stored data.
RESTORE restart the DATA search back to the beginning of memory.

The following program would correctly operate continuously re-reading DATA;
10 DATA 10, 20, 30, 40, 50, 60, 70

201 =1
30 READ A: PRINT A
401 =1+1
50 IF I<8 THEN 30
60 RESTORE
70 GO TO 20

INPUT

When interactive response to DATA requirements became possible, the concept of INPUT from the
keyboard was introduced. Since the classical input device to BASIC was a TTY, the format of input
statements was limited by this device.

Operation of INPUT is considerably enhanced when coupled with the powerful PET screen editor.
The form of the statement is the verb INPUT followed by a variable list. INPUT satisfies the variables in

sequence.
INPUT A, B, C

When BASIC encounters this instruction, it prints a question mark to the screen then activates the screen
editor, blinking the cursor for input. Because you are under control of the screen editor, cursor movement
characters are allowed up until the carriage return is issued as a terminator.

After carriage return is received, data is handed back to BASIC one character at a time. Data is then
interpreted by BASIC using its input buffer and rules of interpretation.

Leading blanks are supressed, so if you are inputting a string which requires blanks or literals, it is
necessary to enclose the input characters within quotes.

The editor picks up only the characters between the question mark and the current position of the cursor.

35

This allows input of data from a pre-constructed form on the screen.

INPUT data may be delimited by commas as with the DATA statement. When more fields are provided
than are actually required, BASIC responds with

?EXTRA IGNORED
and takes only those characters it requires to satisfy the INPUT list.

On the other hand, when not enough data is inputted, BASIC will respond with
29

and begin blinking the cursor again to get additional input.

If an alphabetic field is encountered during the interpretation of a numeric field, BASIC responds with a:
?REDO FROM START

In PET, if input is followed by only a carriage return with no other typing, it is considered by BASICto be a

termination of the program, same as a stop key. This particular feature is a carryover from the days of

teletype BASIC when this was the most convenient way of terminating a program.

The stop key is not operative while the PET waits for input.

INPUT has a special feature which allows you to indicate to the user what input characters are desired
and in what form they are to be. A literal which follows the input command is printed prior to the time the
carriage return is typed. For example:
10 INPUT “BIRTHDAY”; A
it would print:
BIRTHDAY?

and wait for you to input your birthday in standard numeric form to value A. Here is an example of INPUT
to calculate the third leg of a right triangle:

10 INPUT “FIRST LEG”; A

20 INPUT “SECOND LEG”;B

30IFA=00R B=0THEN 10

407 “THIRD I1S”’; SQR (A*A + B*B)

50 GOTO 10

If you run this program and put in values 3 and 4 respectively, you will get a 5.

We can change our program to se how to combine values on a single line. We delete line 20, list line 10,
and change it to:
10 INPUT “FIRST LEG, SECOND LEG”; A, B

This change, when you execute it, will accept values typed as 3, 4. You will see that either form is
acceptable, however, good programming practice protects the user from getting confused as to how
many fields go on a particular line. although it is definitely not good programming practice, it is possible
to mix aipha and numeric values.

10 INPUT “NAME, BIRTHDAY”’; A$, A
GET
A major problem with INPUT is that it does not allow real-time programming. All processing comes to a
grinding halt while the user takes his time to enter some characters and strike RETURN. PET BASIC has
been equipped with a special function which will yield one character at a time from the keyboard or tell
if a key has been pressed.

The command is GET. GET is identical in syntax to INPUT. It is possible to specify a list of variables but

36

generally this is not a good idea because the purpose of GET is to scan the keyboard and return with a
single key closure. When a numeric value is specified
GET A
only numeric keys will be accepted as input. All others will cause the message:
?SYNTAX ERROR

Use of the numeric value is confusing because if no key has been struck, the value returned is zero.
Otherwise it will have a value 1-9 for keys 1-9.

The most desireable way to use GET is with a string variable. If a key has not been pressed, the string
will have a null value (length = 0); otherwise the string will contain the character corresponding to the key
that was pressed. See the next section for a detailed explanation of how strings work.

GET calls a routine which examines the keyboard interrupt buffer. If the buffer is empty, the variable
contains a value of null or zero. If there are characters, the first is taken out of the queue and returned.
Since the length of queue is 10 characters, calling GET 10 times in a loop is a good way to insure that the
queue is empty when waiting for a response. This is particularly useful in interactive games.

The following routine will wait for a key to be pressed and exit only with the value of a key closure:
10 GET A$
20 IF A$="""THEN 10
In this case, "”is a literal which contains no characters and is a null string.

NOTES

37

Chapter 6. ADVANCED PROGRAMMING TECHNIQUES

We have been describing numeric functions primarily, but almost any useful program aiso has to deal
with alphanumeric data. BASIC has a set of functions to deal with these data. Also, all alphanumeric data
may be expressed as a continuous connection of characters which is viewed by BASIC as the value of a
single variable.

PET BASIC, has a $ notation which is used to express variables which are strings of alphanumeric data.
All of the rules which apply to normal variables apply to the string variable.

Following the naming conventions, we can create a variable A$ not equal to A% and not equal to A.
Type A$ ="“NOW IS THE TIME” and PRINT A$ to show the value of the string. This technique can define a
string of a length up to about 70 characters, depending on the number of characters of the line number -
all that can be entered on a line. However, the limitation on the number of characters that can be stored
in a string is 255. You can build strings larger than can be entered. The accumulation of characters from
an 110 device and the construction of data is accomplished by the concatenation of strings. The operator
that is used is + .

We can modify the expression A$ which we have been developing by typing A$=A$+“FORALL”. Print
A$ and you can see that the literal we typed in had a space at the beginning. Unlike numbers which are
formatted by BASIC, the value of the literal is taken literally. A string can contain all combinations of bits
including those that form control characters such as cursor down, and carriage return. This will be
illustrated soon. '

BASIC allows string expressions up to 255 characters long. These can be output to the screen or to any
output device which accepts more than 79 characters. Input, however, is usually restricted to 79
characters because of the size of the input buffer. This problem can be handled by breaking strings into
substrings before they are input or by usi‘ng GET to input each character individually. The substrings or
individual characters can then be recombined into the original string by concatenation.

COMPARISON OF STRINGS
The ASCII table is defined in Figure 2.6. It contains the order in which characters within the PET are

represented when two strings are compared. Characters within a set of strings are compared starting at
the leftmost character to the end of the field specified.

Using the ASCII table, we can compare a string containing an “A” to one containing a “B” in the same
position. The result is that the second string is greater than the first.

A string containing a blank is less than a “1”, which is less than an “A” which is less than a “B”. The
string “A” is less than the string “ABC” or any string containing “A” as the first character. All characters
are compared in sequence with the first unequal character defining the relationship between the strings.
Thus the same relational functions may be used for both strings and numbers.

< > for unequal

= for equal

< for less than
> for greater than

Immediately the string comparison feature can be applied to help you construct ordered lists such as a

check file or a telephone directory. Comparisons can also be used to search ordered lists such as a fileor
a telephone directory.

38

Try the following program to develop a feeling for sequences and matching functions:

10 INPUT A$

20 INPUT B$

30 IF A$=BS$ THEN ? “A$=B$” GOTO 10
40 IF A$ <$B THEN ? “A$ <B$” GOTO 10
50 PRINT “A$ >B$”: GOTO 10

NUMBERS AND ASCIl CODES
Two complementary pairs of operations on strings and numbers aliow us to put unconventional things

into character strings.

STR$
STR$ is a function of one argument. It returns a string that is the character representation of the

numeric expression:

10X = 3.1
20 ?STR$ (X)
RUN

3.1
READY

Positive numbers are preceded by a blank in the STR$ equivalent. Negative numbers have a sign in the
corresponding position.

VAL

VAL is the complement of STRS. It converts a string to a number which may be used for computations. If
the first

non-blank character of the string is not numeric, then the value of the function is zero.

PVAL("“Z")
0
READY

On the other hand, VAL will convert as many digits as it can up to an invalid character.

?VAL (“3.14 AB")

3.14
VAL is an excellent function to use with INPUT since it can prevent an inexperienced user from causing a
REDO from START.
CHR$
We have shown that strings may be assigned printable ASCII characters through either literals or direct
INPUT, but some devices require control characters which cannot be produced by normal means. For
example, a PET printer uses shifted carriage return as a specialterminator to indicate a carriage
return with no line feed when it performs overprinting. CHR$ allows you to specify such control
characters by giving the ASCIl code number. CHRS is a function to convert a number into internal
ASClI representation. The value of the argument must be 0 = X< = 255.

10 A$ = CHR$(65) + CHR$(66)
20 PRINT A$

RUN

AB

READY.

In the above examples, 65 is the ASCIl code for “A” and 66 is a ‘‘B”. We converted the codes to characters
before concatenating them and printing them out.

39

ASC
ASC turns a character into an ASCII code number which may be used in numerical calculations. The

parameter is a string.
?ASC(*A”)
65
If the string consists of multiple characters, then this function will return the code for the first character
of the string.
?ASC(123”)
49
The ASCII code for “1” is 49.

SEGMENT OF STRINGS
in many cases it is desirable to access just part of a string in developing an ordered list. Consider the

problem where in response to an INPUT, a person’s name is typed in. It might consist of their first name,
middle intitial, and last name. It is important that for sorting, however, that not all Johns be together, but
that the list be ordered by last name.

In order to be able to separate parts of strings and use them in expressions, PET BASIC provides three
functions. Most of your programming with strings will consist of using one of these three functions to
analyze pieces of a constructed string. We will present the use of the functions and define all three at
once as they are essentially the same function. Three combinations are provided mainly for programming
convenience.

LEFTS, RIGHTS, and MID$

The function specified as LEFT$(string variable, 1) gives the leftmost “I” characters of the string
specified. If |

is negative, or zero, or greater than 255, then an ILLEGAL QUANTITY ERROR is printed. RIGHT$(STRING
VARIABLE, l)gives the rightmost “I” characters of the string expression. When “I"" is less than, or equal
to zero,

or greater than 255, an ILLEGAL QUANTITY ERROR is printed.

There are two expressions for MID$. The first most general one is MID$(STRING VARIABLE, I, J). This
expression gives “J” characters from the string starting with the “I”th character. If “I"" is greater than the
length of the string, then this will give a null string. If either “I” or “J” negative, or greater than 255, an
ILLEGAL QUANTITY ERROR is printed. For “J” greater than the number of characters left in the string, all
the characters from “I”’ to the end of the string are returned.

The second expression is MID$(STRING VARIABLE, I) which is the same as specifying a “J” greater than
the length of the string. All the characters starting in the “I” position until the end of the string are
returned. If “I"’ is greater than the length of the string, then a null string is returned and if “1” is negative,
zero, or greater than 255, and ILLEGAL QUANTITY ERROR is printed.

All of these variables combined will define a new function which allows us to take either the left number
of characters, right number of characters, or a given number of characters starting at a given position of
the string.

To find the last name from our previous example, we can analyze characters starting from the rightmost
character of the string until the first blank is encountered. To implement this program we need one more
function.

LENGTH OF A STRING
The LEN function gives an exact count of the number of characters contained in a string. Non-printing

40

characters and blanks are all counted as part of length.

Strings are stored in BASIC with a 3-byte vector. Two bytes are a pointer to the location in memory where
the string is stored and the third byte is the length, the LEN function extracts this byte.

We can now write a general purpose program to extract the last name from a full name.
10 INPUT*NAME:FIRST, M|, LAST” A$

20 | =LEN(AS)
30 IF mid$(AS,1,1)=" "THEN 60
401=1-1

50 IF >0 GOTO 30
60 PRINT “LAST NAME = "; MID$(A%, 1 +1)

Two variants of MID$ are used here. Line 30 uses the case where a length is specified as the first
parameter. We are using a length of 1 to search for the blank delimiting the last name. Line 60 does not
specify a length in the MID$. Everything beyond the position of the blank is taken.

STRING STORAGE
Strings are stored in the space between the end of your BASIC program and the highest RAM locations.

As each new string is added, a chain grows downward from the top of memory.

Storage is optimized by never creating a copy of a string assigned to a literal. In this case the vector for
the string points to where the literal occurs in text in memory. Likewise, if an expression A$ =B$ is
executed, both A$ and B$ will share the same copy of the string. New string is required only if a
concatenation or INPUT is executed.

A LARGER EXAMPLE OF STRING FUNCTIONS
Using the string functions described thus far we can write a routine which will shuffle a deck of cards for
us and deal them out one at a time. The following routine has applications in many games like poker or
bridge. Note use of the PET graphics card symbols:

185 REM SET UP DECK MWITH ALL 52 CRRDS

118 CH="RECE3 2445408723454 T 2T 200K 4"

128 CHE=CHH"AVIRIIESOCYTIZEIR TR IO e

138 CHF=CH+ 7 ARZHZH4OSH0ET A I T I 400K

148 CHE=CHFHAMZHIPARTHOMTHESPT AT I FQM "

i98 REM PULL A CARD

2688 RE=2%INT{(LEH{CH) ¥RND (1) s2+10-1

281 ME=MIDSICHF.R. L0 Y5=MID$(CE . R+1. 1>

4368 REM SHREINE THE DECK

432 IFRZITHEMTS=LEFT${CH,.R—-1) - 30T0435

433 TH=""

435 CEF=TE+MIDEOCE R+

43% REM FRINT A CARD

448 FPRINTH$: Y4,

438 IFLEMOC$)2=1THEHZBA

455 REM EMD OF DECK

o8 IHFUTYAMOTHER DEAL Imm 25

478 3070185

REARDY.

The string C$ is initialized to contain a deck of cards. Two characters represent each card; the suit and
rank. As a card is dealt, N$ contains the rank and Y$ contains the suit. The deck string, C$, shrinks each

time so that unique cards are always dealt.

Statement 105 clears the screen. This is done just for show so that the program can illustrate the dealing
of cards. C$ is initialized in statements 110 through 140. C$ is concatenated because the literal
assignment is too large to fit on one line.

41

Statement 200 uses RND to generate an index into C$. The random index is in the range 1to LEN(C$) - 1.
In 201 the index is used to pull N$(rank)Y$(suit) from C$ by the MID$ function.

432 through 435 removes the card from the string so that it will not be dealt again. Since the second
argument of LEFT$ cannot be zero, the R>1 test in 432 prevents an ILLEGAL QUANTITY ERROR.

440 prints each card for our program as it is pulled. 450 tests for the end of the deck and 460 allows the
user to reshuffle.

USER DEFINABLE FUNCTIONS
To this point we have covered all the functions intrinsic to BASIC. Those familiar with mathematics are

used to many more functions in that realm, especially trigonometric. While one could write code to
approximate certain functions in line it becomes very tedious and from a documentation standpoint a
simple expression might become unreadable. Fortunately ‘the facility exists in PET BASIC to define
functions in terms of other functions.

A function is defined in a DEF statement:
100 INPUT B
110 INPUT C
120 DEF FN A(V)=V/IB+C

The name of the function is “FN" followed by any legal variable name. Recall that a variable is either a
letter or a letter followed by a letter or digit.
Thus the following are valid function names:

FNX
FNJ7
FNKO
FNR2

The most severe limitation of user-defined functions is that they must be contained in their entirely on
one line (80-characters). String functions cannot be defined.

The variable in parentheses following the variable name is called a dummy variable. A function may be
defined to be any expression but it may have only one argument. Other variables used in the expression
are considered to be global (have the same value as in the rest of the program), and their current values
are used in the evaluation.

After the funtion definition has been executed, a user defined function can be used as in the following
example:

130 Z =FNA(3)

140?Z

When the DEFFN statement is executed, a simple variable entry is made in the variable table. The first
character of the name has bit 7, the most significant bit, set to indicate it is a function name. Associated
with the name are two pointers: an address of the text where the function is stored and an address of

where the dummy variable is stored. The code to execute a function is re-entrant so that a function may
be defined in terms of other DEF FN. An out of memory error will occur in time as the available stack

space is consumed by recursion. ‘

Figure 6.1 shows some user-defined functions which are ready to be used in PET BASIC programs.

42

FUNCTIONS EXPRESSED IN TERMS OF BUILT-IN BASIC FUNCTIONS

SECANT, SEC(X)

DEF FNA(X) = 1/COS(X)
FOR X < >nl/2

COSECANT, CSC(X)
DEF FNB(X) = 1/SIN(X)
FOR X< >0

CONTANGENT, COT(X)
DEF FNC(X) = COS(X)/SIN(X)
FOR X< >0

INVERSE SINE, ARCSIN(X)
FND(X) = AIN(X/SQR(- X*X + 1))
FOR ABS(X) < 1

INVERSE COSINE, ARCCOS(X)
DEF FNE(X)= — AIN(X/SQR(—X*X + 1)) + n/2
FOR ABS(X) < 1

iNVERSE SECANT, ARCSEC(X)
DEF FNF (X) = AIN(SQR(X*X = 1)) + (SGN(X)-1)"n/2
FOR ABS(X) > 1

INVERSE COSECANT, ARCCSC(X)
DEF FNG(X) = AIN(1/SQR(X*X = 1)) + (SGN(X) — 1)*n/2
FOR ABS(X) > 1

INVERSE COTANGENT, ARCCOT(X)
DEF FNH(X)= - ATN(X) + n/2
FOR ANY X

HYPERBOLIC SINE, SINH(X)
DEF FNI(X) = (EXP(X) — EXP(- X))/2
FOR ANY X

HTPERBOLIC COSINE, COSH(X)
DEF FNJ(X) = (EXP(X) + EXP(—X))/2
FOR ANY X

HYPERBOLIC TANGENT, TANH(X)
DEF FNR(X) = — EXP(— X)(EXP(X) + EXP(—X))*2 +1
FOR ANY X

HYPERBOLIC SECANT, SECH(X)
DEF FNL(X) = 2(EXP(X) + EXP(— X))
FOR ANY X

43

HYPERBOLIC COSECANT, COSH(X)
DEF FNM(X) = 2/EXP(X) — EXP(- X))
FORX< >0

HYPERBOLIC COTANGENT, COTH(X)
DEF FNN(X) = EXP(— X)/(EXP (X)+EXP (-X)) #2+1
FORX< > 0

INVERSE HYPERBOLIC SINE, ARCSINH(X)
DEF FNO(X) = LOG(X + SQR(X*X + 1))
FOR ANY X

INVERSE HYPERBOLIC COSINE, ARCCOSH(X)
DEF FNP(X) = LOG(X + SQR(X*X — 1))
FOR X> =1

INVERSE HYPERBOLIC TANGENT, ARCTANH(X)
DEF FNQ(X) = LOG((1 + X)/(1 — X))/2
FOR ABS(X) < 1

INVERSE HTPERBOLIC SECANT, ARCSECH(X)
DEF FNR(X) = LOG((SQR(— X*X + 1) + 1)/X)
FORO < X < =1

INVERSE HYPERBOLIC COSECANT, ARCCOSH(X)
DEF FNS(X) = LOG((SGN(X}*SQR(X*X + 1) + 1)/X)
FORX <> 0

INVERSE HYPERBOLIC COTANGENT, ARCCOTH(X)
DEF FNT(X) = LOG((X + 1)/(X — 1))/2
FOR ABS(X) > 1

GOSUB-RETURN
We have seen how to use the DEF FN to create a single variable function which can be used like any

intrinsic function. The major limitation of DEF FN is that it can consist of only a single algebraic
expression and it must fit on one line.

Often several lines of code will be repeated through a program. These program lines can be collected in
one place and executed by a GOSUB command:
GOSUB 5000

The lines of code are called a subroutine. GOSUB means go to the subroutine. It differs from GOTO in
that GOSUB remembers at which line number it was executing before the GOSUB and can return
automatically to the foliowing line after executing the subroutine code.

A subroutine is stored as a series of lines in BASIC starting at the line number specified by the GOSUB.
The last line of the subroutine must be a RETURN statement. This telis BASIC you want to resume
executing the mainline code after the GOSUB.

44

Example;
10 REM THIS IS THE MAINLINE CODE
20 GOSUB 50

30 STOP
50 REM THIS IS A SUBROUTINE
60 RETURN
If we could take a snapshot of execution, we would see the lines executed in this order
10-20-50-60-30

Five bytes are pushed onto the stack when a GOSUB is executed: a GOSUB token, and two bytes each for
the line number and text address of the GOSUB. The line number following the GOSUB is stuffed into the
currently executing line number and the GOTO routine handles the branch. RETURN restores the line
number and text address from the stack to resume mainline execution. All F O R entries in front of the
GOSUB entry are also eliminated.
The physical limitation on the number of GOSUB's in effect at one time is 23. After this many there is very
little stack space left.
Example of subroutines
Consider the factorial function:

n!'=1x2x3x.xn
You cannot define this function with the DEF FN.command. On the other hand, you can use the following

simple routine to find n! for any given n (up to 34). (NF denotes n factorial)
10 INPUT N
100 I=1T:NF =1
110 NF =NF~I
120 I=1+1
130 IF | <=N GOTO 110

140 PRINT NF
The routine on lines 100-140 could be used many times during a program using different values for N. For
example, suppose you want a binomial coefficient:

The program would be

10 PRINT “M =" INPUT M
15 PRINT “R="";: INPUT R
20 N =M:GOSUB100:X = NF
30 N =R:GOSUB100:Y =NF
40 N =M —-R:GOSUB100:Z = NF
50 BC=X7(Y*Z)

60 PRINT BC

70 END

100 I=1:NF =1

110 NF =NF*I

120 I=1+1

130 IF1 <=N GOTO 110

140 RETURN

45

TYPE RUN
for the values M=11 R=6.
RESULT IS 462

Subroutines act like a “‘black box’ or complex function within the program. Certain fixed variables are
used to input the data and other fixed variables (or sometimes the same variable) are used to output the
results. For example, in the subroutine on lines 100-140, the variable N is input and the variable NF is

output as shown:

N — SUB100 —> NF

NF =N!

When we make N equal to M, R, and M-R respectively, we get NF equal to M!, R! and (M-R)!.
Of course, some subroutines do not need inputted variables as they might just perform a specified
function such as printing a special form on the screen:

SUB => print form

NESTED SUBROUTINES
The subroutine on page 6-14 itself could be used as a subroutine in a program that repeatedly calculates

the binomial coefficient. Merely change line 70 to
70 RETURN
The subroutine, denoted SUB 10, beginning on line 10 and ending on line 70 has the following structure:

M —> M
SUB10 -> BC BC = R
R—>

Ny PNF

sSuB100

Subroutines that are used by other subroutines are called nested subroutines. In this case, SUB100 is
nested in SUB20. Many programs have subroutines nested in subroutines in nested subroutines...The
only limit is the amount of memory available.

Subroutines can also be nested in more than one subroutine. An input subroutine, for example, that
accepts specific characters from the keyboard, prints a winking cursor, and prints the given characters
on the screen, might be called on many times in the main program itself and also in various other
subroutines.

CAUTIONS
A common error in using subroutines is to allow a mainline execution to fall into a following subroutine

and result in a RETURN WITHOUT GOSUB ERROR. Put a STOP or END statement in your code to prevent

46

this
10 GOSUB 20 10 GOSUB 20
20 RETURN 15 END

20 RETURN
Sometimes, you might have a tendency to make everything into a subroutine. If agiven subroutine is used
just once, then it should be incorporated into a program where it is used to save execution time and
memory space. On the other hand, subroutines are incredibly powerful programming tools and allow you
to structure your program into blocks.

FOR-NEXT LOOPS
FOR-NEXT simplifies the writing of BASIC programs by allowing one to specify complex loop structures

with a single statement.
FORI=ATOBSTEPC

The end of the loop is specified by the statement
NEXT

Nested FOR NEXT loops are permitted as long as each loop uses a unique variable. Use of identical loop
variable names may result in NEXT WITHOUT FOR errors.

Exiting a FOR-NEXT loop via a branch will leave the FOR entry on the stack. The best way to handle this is
to assign the maximum limit to the variable then exit the loop through a NEXT.

We have seen how repeated operations can be performed using a counting variable such as | in the
routine.

10 I=1

20 1=1+1

30 IFI <=10THEN GOTO 20

In this case, any routine appearing in lines 21-29 will be repeated 10 times. In addjtion, the variable Fwill
have values which range from 1to 10 in increments of 1.

This looping process can be genralized in the case:
10 1=A
20 I=1+C
30 IFI <=BTHEN GOTO 20

The values of | will range from A to B in increments of size C.

Since this process is cumbersome to use, BASIC also provides you with the FOR-NEXT statement:
10 FORI=ATO BSTEPC
20 NEXT

| is the counting variable, A is the initial value, B is the ending value, and C is the increment.

A, B, C may not only be constants, but they can be any valid arithmetic expression
10 FOR I=A@2)+1TO J*2 STEP -1

On the other hand, the counting variable can be any floating variable but cannot be integer (I%) or
subscripted 1(1,4). When the increments are of size 1(C = 1) you need not include the STEP in the program.

10 REM COMPUTATION OF FACTORIAL
20 NF =1
30 FORI=1TON

47

40 NF=NF*I|
50 NEXT

Note how much shorter and more clearly this routine is written compared to the same factorial
computing program written without FOR-NEXT.

Whenever a FOR is executed, a 16-byte entry is pushed onto the stack. Before this is done, a check is
made to see if there are any entries already on the stack for the same loop variable. If so, that FOR entry
and all other FOR entries that were made after it are eliminated from the stack. This is done so that a
program which jumps out of the middle of a FOR loop again will not use up 16-bytes of stack space
each time.

NEXT matches the most recent stack entry or the variable specified as a parameter and resets the stack
to that point. If no match is found, a NEXT WITHOUT FOR error occurs.

GOSUB execution also puts a 5-byte entry on the stack. When RETURN is executed, the stack is searched
for a FOR entry that cannot be matched, When all the FOR entries on the stack have been searched, a
pointer

is left on a GOSUB entry. This assures that if you GOSUB to a section of code in which a FOR loop is
entered but never existed, the RETURN will still be able to find the most recent GOSUB entry.

RETURN eliminates the GOSUB stack entry and all FOR entries made after the GOSUB entry.

NESTED FOR-NEXT LOOPS
FOR-NEXT loops, like subroutines, can be nested, That is, a FOR-NEXT loop may be contained in another

and so on. When doing so, it is important not to use the same counting variable as this will result in
NEXT WITHOUT FOR ERROR
10 FORI=1TO 10
15 PRINT “1”
20FORJ=1TO 10
25 PRINT “J“
30 FORK=1TO 10
35 PRINT “K*
40 NEXT
50 NEXT
60 NEXT

Lines 40-60 of the above example are confusing at first glance because one cannot tell which NEXT
corresponds to which FOR. Optionally one may specify a variable following NEXT. The variable refers to
the counting variable used in the corresponding FOR but in no way is it required by BASIC to execute
the NEXT.

40 NEXT K

50 NEXT J

60 NEXT |

PET BASIC will also allow you to write one NEXT that terminates ali three FORs at one time
40 NEXT K, J, |

A NEXT WITHOUT FOR error will result, however, if you are careless in specifying the order of K,J,1I.

It is interesting, however, to see how compact the notation appears and how powerful the FOR-NEXT
expressions can be when they are nested.

48

Some hints
You may change the value of the counting variable during the looping sequence.

For example,
10 FORI=1TO 8
20 X=X+1
30IFI=7THEN | =8
40 NEXT
50 PRINT X

will compute the value
X=14+2+3+4+5+6+7=28

Similarly, when you exit a FOR-NEXT loop using a branch, you should assign the counting variable the
end value and then exit the loop via a NEXT statement. For instance, you should use

10 FORI1=1TO 10

20 IF FNA(D=0THEN I =10

30 NEXT:RETURN
instead of

10 FORI=1TO 10

20 IF FNA(l)=0 THEN RETURN

30 NEXT

SUBSCRIPTED VARIABLES
Array variables need not be declared with a DIM statement if they have only one dimension and contain

less than 10 elements. The total number of elements in an array can be computed by multiplying the
(number of elements in each dimension)+ 1 by the other subscripts. Thus A(9,8) contains (9%1)*(8%1)
elements. Subscripts start at 0 and go up to the maximum value

A(0,0)------- A(0,8)

A(9,0) A(9,8)
Limits on the number of dimensions and size of a dimension are determined by size of memory available

and space available on a line following a DIM. PET BASIC restrict the total number of
array elements to 256. Each array element requires at least 5-bytes of storage.

If a single dimension array requires more than 10 elements, the DIM statement must be executed before
the first reference. Otherwise, a REDIM’ED ARRAY error will occur.
Example: List of account balances

$100
$135
$57.86
<$987>
$22
<$63>
$50
<$21>
$21

OO NOOOTHA WN =

Suppose we need to write a simple program which allowed you to INPUT an account number and a
transaction and keep a running total on each account. We could refer to each account balance as A1, A2,

49

A3, A4, A5, etc. This is acceptable but would require a lot of parallel logic to accomplish the summation

10 INPUT “ACCOUNT, CHARGE”; |, C

201F =1 THEN A1=A1+C

30IFI=2THEN A2=A2+C

etc.
This list can be stored in a single variable which is actually a list of variables. This list is an array of
values and an individual value is accessed by an index. The index we can use is the account number. Our
program can be reduced to:

10 INPUT “account, charge”; 1,C

20 A)=AhH+C

30 GOTO 10
The list we have represented has 9rows and 1 column. Thus it is a 1 dimensional array. A multiple column
table can also be represented. This is a two dimensional array.

Account # Balance #of transactions

$100
$135
$57.86*
<$987>
$22
<$63>
$50
<$21>
$21

OCOONOOT A WN =
_ b b b d ed b ek

Our table has 9 rows and 2 columns. To access a certain entry position, you must specify the row index
and column index of where it is contained. For example, the quantity denoted by a *is in row 3, column 1.

In order to use such a tabte in a BASIC program, you must provide a statement, to describe the number of
rows and columns contained in the array variable.

Such a description is a DIMension statement. For our table of 9 rows and 2 columns we could write
DIM A(9,2)

Let us rewrite our program to update the column containing the number of transactions
10 INPUT “ACCOUNT, CHARGE'; |, C
20 A0 H=Al1)+C
30 A(l,2)=A(l,2) +1
40 GOTO 10

Now suppose that we had a table for each of 5 companies and each company had 9 accounts and each
account had a balance and each balance had a number of transactions. We can describe this as piling
sheets of paper on top of each other and refering to each sheet by number.

50

N
e

We have created by this example a multi-dimensional subscripted variable. These arrays correspond to
matrices used in mathematics.

In mathematics, a vector is an ordered collection of numbers:
V=(U1a Vz,...,V,,)

The above vector has n components and is calied a vector of dimension n.

For example,
v=(3,9,2)
is a vector of dimension 3.

Order is imporatant here since if
w=(3,2,9)
WHv.

Vectors can be stored in memory using subscripted variables. These variables are used in the same way
as the variables we have seen so far -X, 1%, A$, etc. That is, they call whatever value is stored in that
variable or return a zero or null (“ ") if the value has not been previously specified.

Like vectors, subscripted variables have the power to execute a large number of operations using a single
notation. They are especially useful when combined with FOR-NEXT loops as the next example shows.

Example: Dot Product

The dot product of two vectors v & w is a vector, denoted by v ®* w, whose ith component (v°w)i is Vi X Wi'

For example, in the four dimensional case, if
v=1{(v, Vs, Vs, V)

and w = (W, Wy, W3, W,)

Then vew =(v; X Wi, v2 X Wy, vs X Wa, Vs X W,)

Suppose we had
v=(56,7,11,4,6, 1
w =(9,5,2,1,0,3,2)
Then a program to compute the dot product v * w might look like
FORI=1TO 7:READ V(I):NEXT
FORI=1TO 7:READ W(I):NEXT
FORI=1TO 7:VW(I) = V() *W(I):NEXT
FORI=1TO 7:?2VW(I):NEXT

51

DATA 5,6,7,11,4,6.1
DATA 9,5,2,1,0,3,2
SUBSCRIPTED STRING VARIABLES
It was mentioned previously that subscripted variables can be
decimal: A(l)
integer: A%(l)
string: A$(l)
Subscripted string variables are extremely useful as shown in the next program which prints a bar graph
of the U.S. GNP from 1966 through 1974.

GROSS NATIONAL PRODUCTS

(IN $ BILLIONS)
The program listing is:
READY
10 SPACE $ =" "

20 FOR 1 =1 TO 7: READ AS$(I):NEXT
30 FOR 1=0TO 8: READ V(I):NEXT
40 PRINT* 7 SPE(8)’GROSS NATIONAL PRODUCTQ”

50 PRINTSPG(12)“(IN $BILLIONS)Q”

100 FORI=0TO B

110 X = V(1)/45:Y = INT(X)

120 PRINT “R”LEFT$(SPACES$,Y)A$(S*(X -Y))
130Q” PRINT “ £ R”STR$(66 + 1)’ $“STR$(V(I))*“Q”

140 NEXT

200 DATA(‘!!!,“!”,H!!,,‘K!!7,“"’,1"1’,“]’1

210 DATA753,796,869,936,982,1063,1171,1307,1413
READY

52

The subscripted values V(0), V(1),...,V(8) are the GNP’s for each of the 9 years. The subscripted strings
A$(0), A$(1),...A$(7) give accuracy to the graph by printing these graphics:

string prints ASC
A3(0) null(by

default)
AS(1) I 165
A3$(2) | 180
AS$(3) N 181
AS$(4) [161
A$(5) L 182 (R)
A$(6) L 170 (R)
AS$(7)] 167 (R)
THE HEADING

GROSS NATIONAL PRODUCT
(IN $BILLIONS)

is printed in lines 50 and 60 and then a FOR-NEXT loop on lines 100-140 prints out the eight bars. Line 120
prints out each bar and line 130 prints a cursor up and then the associated year, STR$(66 + 1) and GNP,
STRS(V(1)).
Each bar is made up of Y reverse field spaces and the string A$(8*(X-Y)). The Y is determined by the
formula

Y =INT(V(1)/45;

=|NT (GNP/45)

Here, 45 is purely a scale adjustment. The proportions of the bars remain the same when values other
than 45 are used.

Fine tuning on the bar length is accomplished using the subscripted string variable

A$(8*(X-Y))
Here 8*(X-Y) will range over the decimal values 0 through 7.99...9 but A$ automatically truncates the
decimal part.

DIMENSION STATEMENTS
When using more than 10 subscripts for any variable, a dimension statement must be given. It takes the

form, DIM A$(K), where K is the largest subscript of A$ used in the program. When variables are
redimensioned without a CLR statement or when a dimension statement appears after the variable has
been used, a 2REDIM’D ARRAY ERROR occurs. When a dimension statement is made, space is reserved
in memory for the given number of variables, including the variable whose subscript is 0. It is good
programming sense, therefore, to begin subscripts at 0 and not 1.

Because the variables are divide in storage between arrays and simple variables insertion of an
additional simple variable is a bit more complicated once an array has been defined. First, the entire array
storage area must be block moved upward by seven bytes and the pointers adjusted upward +7. Finally,
the simple variable can be inserted at the end of simple variable storage.

53

If large arrays are defined and initialized first before simple variables are
assigned, much execution time can be lost moving the arrays each time a
simple variable is defined. The best strategy to follow in this case is to
assign a value to all known simple variables brfore assigning arrays. This
will optimize execution speed.

Functions of new and CLR on data pointer:
CLR

String pointer equated to top of memory

Data pointer to start of text -1

End of array table to start of variables

End of simple variables to start of variables
NEW

String pointer equated to top of memory

Data pointer to start of text -1

End of array table to start of text +3

End of simple variables to start of text + 3

Start of variables to start of text +3

54

WYY 13d o siajutod jedidund ‘g9 9inbiy

/N weibouid jeosidA)

/N uoliezijeljiug je

M33d .

y818 G/l cLil 2601 Geol
sBuls sheure sa|qeleA sjuswalels
olisvd
/N /N /N N /N /N
8¢0lL Ge0L tveolL
2618 000
/N N
[}
o) » 3 t
> 2 s 2 3 S
[e] nnus - po] © @
g = g = E 5 %
E 2 s 2 e s hat
m o lm ..m ...OL (2] o
=t c © e
g < 2 2 < % 3
L 7]) ® L7 ° »
el oct 8¢1 9clt 174! 124} [44%
£el 1EL 14} JXAS el 1°1 4" gct

WYY 13d OLNI SHILNIOd TVdIONIHd

M33d . 952

55

NOTES

56

Chapter 7. PET INTERFACES AND LINES

As indicated in Figure 7.1, there are four connectors provided, accessible through slots in the rear and
side of the PET that enable the user to interface the computer with external devices.

As outlined in Figure 7.2, edge card connectors are utilized which are, in fact, direct extensions of the
PET main logic assembly board itself. There are two contacts to each position of the connector. The
contact identification convention for J1 and J2 is also illustrated in Figure 7.2.

SWITCH

L’/

/

)

IEEE-488 1.6A FUSE
MEg""OCR(;’NiIXE’::‘}%SQON 2ND CASSETTE INTERFACE J1 | (SLO BLO}
INTERFACE J3
PARALLEL 3-WIRE AC
USER PORT J2 POWER CORD

SERIAL NUMBER

ELECTRICAL SPEC.

Figure 7.1. Simplified view of PET showing switch,
fuse, line cord and interfacing connectors.

FROM PET MAIN LOGIC ASSEMBLY BOARD

Top View

\ Upper

Insulation 1 Contact

\ 2 3 4 5 6 7 8 9 10MN1 12/(orPin)

A B C DE F H J KLMN\égnWtearct

Rear or Edge-on View through slots in PET {or Pin)

Figure 7.2. Simplified views of edge connectors J1 and J2
to illustrate contact identification convention.

|EEE-488 INTERFACES (Connector J1)
The standard IEEE-488 connector is not used on the PET. Instead, a standard 12 position, 24 contact edge

connector with .156 inch spacing between contact centers is provided. This permits it to be compatible
with all of the other connections to the PET.

Keying slots are located between pins 2-3 and 9-10.

Table 7.3 shows the PET contact identification characters, the connection for a standard |IEEE connector,

57

the IEEE mnemonics and the signal definitions.

Electrical drive capability and line impedance matching is in accordance with IEEE-488 specifications.

Standard
PET Pin CoInEnEegtor élisgigl Signal
Characters Pi M . Definition/Label
in nemonic
Numbers
Upper Pins
1 1 DI01 Data input/output line #1
2 2 Di02 Data input/output line #2
3 3 Di03 Data input/output line #3
4 4 D104 Data input/output line #4
5 5 EOI End or identify
6 6 DAV Data valid
7 7 NRFD Not ready for data
8 8 NDAC Data not accepted
9 9 IFC Interface clear
10 10 SRQ Service request
1 11 ATN Attention
12 12 GND Chassis ground and IEEE
cable shield drain wire
Lower Pins
A 13 D105 Data input/output line #5
B 14 D106 Data input/output line #6
o 15 Dt07 Data input/output line #7
D 16 DI08 Data input/output line #8
E 17 REN Remote enable
F 18 GND DAYV ground
Lower Pins
H 19 GND NRFD ground
J 20 GND NDAC ground
K 21 GND IFC ground
L 22 GND SRQ'ground
M 23 GND ATN ground
N 24 GND Data ground (D101-8)

Table 7.3. PET contact identification characters.

|EEE-488 identification characters,
associated labels and descriptions.

RECEPTACLES FOR THE {EEE INTERFACE
A list of frequently used 12 position, 24 contact receptacles that are suitable for connection to the PET

edge card connector J1 and J2 is shown here:

Manufacturer Part Number
Cinch 251-12-90-160
Sylvania 6AGH1-12-1A1-01
Amp 530657-3
Amp 530658-3
Amp 530654-3

Table 7.4. Receptacles recommended for PET IEEE-488
connectors or parallel user port.

58

IEEE-488 CONNECTORS
The |EEE-488 standard receptacles are not directly connectable to the PET edge connector; some of

these are shown in Table 7.5, and belong to the Cinch Series 57 or Champ Series (Amphenol). Also shown
are their matching plugs.

Connector g .
Manufacturer Identifier Description
Cinch 5710240 Solder-plug
Cinch 5720240 Solder-receptacle
Amp 552301-1 Insulation displacement plug
Amp 5523(5-1 Insulation displacement receptacle

Table 7.5. IEEE standard connectors

Commodore has available a 1 meter long |IEEE-488 dual connector-PET edge connector, cable. Please
contact your local dealer or Commodore for price and delivery.

PARALLEL USER PORT (Connector J2)
The tines for this interface are brought out from the PET main logic board to a 12 position, 24 contact

edge connector with a .156 inch spacing between contact centers. See Table 7.4 for suitable mating
connectors.

Keying slots are located between pins 1-2 and 10-11.

Table 3-1 shows the PET pin identification characters, the corresponding labels and their descriptions.
Note that the connections 1-12, the top line of contacts (see Figure 7.6), are primarily intended for use by
the PET service department or qualified dealers. When using the incorporated ROM diagnostic, a special

connector is used; this jumpers some of the top contacts to the bottom contacts. It is strongly advised
that the top connectors 1-12 be used only with extreme caution.

Pin Signal .
!dentification igha Stgpal_
Character Label Description
Ground Digital ground.

2 T.V. Video Video output used for external display,
used in diagnostic routine for verifying
the video circuit to the display board.

3 IEEE-SRQ Direct connection to the SRQ signal on
the IEEE-488 port. It is used in verify-
ing operation of the SRQ in the diag-
nostic routine.

4 |IEEE-EOI Direct connection to the EQOI signal on
the IEEE-488 port. It is used in verify-
ing operation of the EOI in the diag-
nostic routine.

5 Diagnostic When this pin is held low during power

Sense up the PET software jumps to the diag-
nostic routine, rather than the BASIC
routine.

Table 7.6. Parallel user port information.
PET pin identification characters, the corresponding
signal fabels and their descriptions.

Table continued on next page.

59

Table 7.6. Parallel user port information (continued).

Pin Signal Signal
Identification Label Description
Character P
6 Tape #1 Used with the diagnostic routine to
READ verify cassette tape #1 read function.
7 Tape #2 Used with the diagnostic routine to
READ verify cassette tape #2 read function.
8 Tape Write Used with the diagnostic routine to
verify operation of the WRITE func-
tion of both cassette ports.
9 TV. T. V. vertical sync signal verified in
Vertical diagnostic. May be used for externai
TV display.
10 TV T. V. horizontal signal verified in
Horizontal diagnostic may be used for TV display.
11,12 GND Digita! ground.
A GND Digital ground.
B CA1 Standard edge sensitive input of
6522VIA.
C PAG
D‘ PAT Input/output lines to peripherals,
E PA2 | and can be programmed independ-
F PA3 ently of each other for input
or output.
H PA4
J PAS
K PAG
L PA7
M CB2 Special 1/0 pin of VIA.
N GND Digital ground.

VERSATILE INTERFACE ADAPTER
The lines on the bottom side of the user port connector originate from a Versatile Interface Adapter

(VIA MOS Technology part #6522).
The signals CA1, PAO-7, and CB2, are directly connected to a standard 6522 VIA located at hexadecimal

address E840. (Decimal address 59456).

The parallel port consists of eight programmable bi-directional 1/0 lines PAQO-7, an input handshake line
for the eight lines,CA1, which can also be used for other edge-sensative inputs and a very powerful
connection, CB2. This has most of the abilities of CA1, but can also act as the input or output of the VIA

shift register.

A detailed specification for the VIA is below. All signals on the VIA that are not connected to the user
port are utilized by the PET for internal controls. Please note that the user should avoid interfacing these

signals in any way.

60

Table 7.7 shows the decimal and hexadecimal addresses in the PET associated with the VIA.

Hexa-

Decimal . $E840+ Addressed Location
Decimal

59456 E840 0000 Qutput register for |/O port B.

59457 E841 0001 Output register for 1/0 port A
with handshaking.

59458 E842 0010 1/0 Port B Data Direction
register.

59459 E843 0011 1/0 Port A Data Direction
register.

59460 E844 2100 Read Timer 1 Counter low order

byte Write to Timer 1 Latch
low order byte.

59461 E845 2101 Read Timer 1 Counter high
order byte. Write to Timer 1
Latch high order byte and
initiate count,

59462 E£846 0110 Access Timer 1 Latch fow order
byte.

59463 E847 2111 Access Timer 1 Latch high order
byte.

59464 E848 1000 Read low order byte of Timer 2

and reset Counter interrupt.
Write to low order byte of
Timer 2 but do not reset

interrupt.

59465 EB849 1001 Access high order byte of Timer
2; reset Counter interrupt on
write.

59466 E84A 1010 Serial 1/0 Shift register.

59467 E84B 1011 Auxiliary Control register.

59468 E84C 1100 Peripheral Control register.

59469 E84D 1101 Interrupt Flag register (IFR).

59470 E84E 1110 Interrupt Enable register.

59471 E84F 1M Output register for 1/0 Port A,

without handshaking.

Table 7.7. VIA 6522 Decimal and Hexadecimal addresses in PET.

PROGRAMMING THE USER PORT
Data lines PAO-7 are individually programmed to function for input or output as required. This is done by

using a software POKE 59459 command to place a number into the data direction register. Table 7.8
shows a practical example of input/output selection.

The programming need only be carried out at the beginning. From then on POKE 59471 can be used to
drive the pins programmed as outputs, and PEEK(59471) will read all the inputs.

61

Command Binary .

Statement Representation Lines Mode
POKE 59459,255 11111111 PAG-7 Output
POKE 59459,0 00000000 PAQ-7 Input
POKE 59459,240 11110000 PAG-3 Input

PA4-7 Output

Table 7.8. Parallel user port example.
Programming of lines PAO-7 for input/output operation.

SECOND CASSETTE INTERFACE (Connector J3)
This interface is brought out from the PET main logic board to a 6 position, 12 contact edge connector

with .156 inch spacing between contact centers (See Figure 7.9).
A keying slot is located between pins 2-3.
This port is intended for use with the Commodore second cassette system only. Any other connections
are made at the risk of the user. Please note that + 5 volts is not intended for use as an external power
supply.
Table 7.10 shows the PET pin identification characters, labels and descriptions. Table 7.11 shows some
typical receptacles that are suitable for the second cassette connector.
' FROM PET MAIN LOGIC ASSEMBLY BOARD
Top
View

Upper
Contact

N L 234 6/‘°’P""

A8 C D E F o Comact

Insulation

Rear or Edge-on View through slot in PET

Figure 7.9. Simplified view of edge connector J3
with contact identification.

Note A-1,B-2, etc., imply a pin A to pin1, pin B to pin 2, connection.
In some special units, pins 1 through 6 were not connected.

Pin
Identification Label Description
Characters

A-1 GND Digital ground.

B-2 +5 Positive 5 volts to operate cassette circuitry
only.

C-3 Motor Computer controlled positive 6 volts for
cassette motor.

D-4 Read Read line from cassette.

E-5 Write Write line to cassette.

F-6 Sense Monitors closure of mechanical switch on
cassette when any button is pressed.

Table 7.10. Second cassette interface port.
PET pin identification characters, labels and associated descriptions.

62

Manufacturer Identifier
Sylvania 6AJ07-6-1A1-01
Viking 2KH6/1AB5
Viking 2KH6/9AB5
Viking 2KH6/21AB5
Amp 530692-1
Sullins ESM6-SREH
Cinch 250-06-90-170

Table 7.11. A selection of suitable receptacles for connecting
with the PET second cassette edge connector J3.

MEMORY EXPANSION CONNECTOR (Connector J4)
The memory expansion connector provides access to the buffered and decoded input/output lines from

the 6502 microprocessor. Figure 7.12 shows a simplified view of the 40-position-80 contact edge
connector used. The spacing between contact centers is 0.1 inch.
Note that the 40 top edge “B” connections (or pins) are ground returns for the corresponding 40 lower

edge “A” connections.

Pi 1|]

Insulation SIDE B Upper
\ Contact
{or Pin)
1 2 3 4 5 6 33 34 35 36 37 38 39 40
. . Lower
SIDE A Rear or Edge on View through slot in PET Contact
(or Pin)
Figure 7.12. Simplified view of edge connector J4 with contact
identification. All side B contacts grounded.
Table 7.13 shows the PET pin numbers, line labels and line descriptions.
Side A Line ' Line Descrioti
Pin Numbers Labels ine Description
A1 BAG Address bit @, used for memory expansion.
Buffered.
A2 BA1 Address bit 1, used for memory expansion.
Buffered.
A3 BA2 Address bit 2, used for memory expansion.
Buffered.
A4 BA3 Address bit 3, used for memory expansion.
Buffered.
Ab BA4 Address bit 4, used for memory expansion.
Buffered.
AB BAb Address bit 5, used for memory expansion.
Buffered.
A7 BAG6 Address bit 8, used for memory expansion.
Buffered.
A8 BA7 Address bit 7, used for memory expansion.
Buffered.

Table 7.13. Memory expansion connector. PET pin numbers.
Line labels and line descriptions.

Table continued on next page.

63

Table 7.13. Memory expansion connector. PET pin numbers.
Line labels and line descriptions (continued).

Side A Line . P
D
Pin Numbers Labels Line Description
A9 BAS8 Address bit 8, used for memory expansion.
Buffered.
A10 BA9 Address bit 9, used for memory expansion.
Buffered.
A1 BA10 Address bit 10, used for memory expansion.
Buffered.
A12 BA11 Address bit 11, used for memory expansion.
Buffered.
A13 NC No connection.
A14 NC No connection.
A15 NC No connection.
A16 SEL 1 4K byte page address select for memory
locations 1000-1FFF.
A17 SEL 2 4K byte page address select for memory
locations 200@-2FFF.
A18 SEL 3 4K byte page address select for memory
locations 3000-3FFF.
A19 SEL 4 4K byte page address select for memory
locations 4000-4FFF.
A20 SEL 5 4K byte page address select for memory
locations 500@-5F FF.
A21 SEL 6 4K byte page address select for memory
locations 600@-6F FF.
A22 SEL 7 4K byte page address select for memory
locations 7000-7FFF.
A23 SEL 9 4K byte page address select for memory
locations 9000-9FFF.
A24 SEL A 4K byte page address select for memory
locations AQQQ-AFFF.
A25 SEL B 4K byte page address select for memory
locations BOOO-BFFF.
A26 NC No connection.
A27 RES Reset for 65602 microprocessor. Note:
connected to 74500 output.
A28 IRQ Interrupt request line to the microprocessor.
A29 B@2 Buffered phase 2 clock.
A30 R/W Buffered read/write from 6502 micro-
processor.
A31 NC No connection.
A32 NC No connection.
A33 BD® Data bit 0. Buffered.
A34 BD1 Data bit 1. Buffered.
A35 BD2 Data bit 2. Buffered.
A36 BD3 Data bit 3. Buffered.
A37 BD4 Data bit 4. Buffered.
A38 BD5 Data bit 5. Buffered.
A39 BD6 Data bit 6. Buffered.
A40 BD7 Data bit 7. Buffered.

64

ADDITIONAL BASIC COMMANDS
By this time, the user is probably familiar with the use of the commands INPUT and PRINT. INPUT

permits the output or display of data. These commands are common to all forms of BASIC.

To add flexibility to the PET computer system, several commands have been added to classical BASIC in
the PET, and future Commodore products will take advantage of the resulting extra capability. In general,
enhanced flexibility of data interchange between the PET and peripheral devices is possible, thanks to
the use of these extra commands.

To communicate with any device, a combination of the additional commands is used:
a) OPEN/CLOSE Open or close logical file.

b) PRINT# Write data from PET to 1/O device.

c) CMD Same as PRINT# but leaves IEEE device an active
listener on bus after execution of command.

d) INPUT# Read data from /O device to PET.

e) GET# PET accepts one character from /O device.

INPUT/QUTPUT COMMAND PARAMETERS
in order to use the additional commands referred to in the above, four parameters must be taken into

consideration:

) Logical file number (LF)
) Device number (D)
)
)

O

Secondary address (SA)
File-name (FN)

a o

These parameters can appear, for example, when using the OPEN# command in the form of the
statement:

OPEN#LF,D,S,FN
LOGICAL FILES
Files are used to store and retrieve data, as for example in the case of a magnetic tape or disc file. A
convenient extension of this idea is to regard any device which can receive and/or generate data as a
logical file. To the PET operating system, data might just as well have come from, or be going to, a
storage system such as magnetic tape.

For example, imagine that an external digital voltmeter is set up so that it can transmit voitage readings
upon request to the PET via the |IEEE bus. Sometime during the “‘voltmeter program” the programmer will
have to open a file and assign a logical file number to refer to the voltmeter. Once this has been done, The
PET can use a “read” command {INPUT#) which uses the logical file number to refer to the voltmeter.
When no further data is required from the voltmeter, the logical file can be closed.

More generally, the advantages offered by the use of logical files are:

a) Every device number secondary address combination
can be associated with its own unique logical file number
within a program.

b) Muitiple files within a single dev ice can be refered to
by means of distinct logical file numbers. This approach is
to be used in the newly developed disc storage system for
the PET.

¢) Once a logical file number has been defined in an OPEN

65

statement, within a program, only this number need be used
in the following input/output statements. This eliminates the
need for further restatement of device number, secondary
address (where used) and file name (where used).

Although it is permissable to identify and use many logical files in a given program, the PET operating
system has to keep track of the files that are currently in use in the program. The greatest number of files
that can be controlled by the PET at one time is ten. Note that exceeding ten will result in loss of PET
operation; this can be restored by switching the computer off and on. A logical file number can be any
integer in the range 1 through 255.

DEVICE NUMBERS
All devices which the PET communicates with are assigned numbers. The first four of these are reserved

for the following peripherals:

Device
Number Device
0 Keyboard

Default- 1 Cassette 1 panel mounted
2 Cassette 2 add-on
3 Video screen

All other devices are automatically assumed by the PET to be IEEE devices, and control is transferred to
the device which will have been allocated a number within the range 4 through 30. Except in special
cases, a specific number would be allocated to each IEEE device to allow the PET and a particular device
to communicate using the parallel IEEE-488 bus.

On many IEEE devices, the allocation of the device number is made by means of a switch, or in the case
of less expensive products, by the connection of jumpers.

SECONDARY ADDRESSES
The concept of secondary address may be new to those people who have never worked with the IEEE bus.
The use of a secondary address permits an intelligent peripheral to function in any one of a number of
modes. For example, in a PET printer, there are six secondary addresses:

Secondary

Address Operation

Default- 0 Normal printing
Printing under format statement control
Transfer data from PET to format statement
Set variable lines per page
Use expanded diagnostic messages
Byte data for programmable character

B WN =

In short, by changing the secondary address used to communicate with a given physical device, its
operating characteristics can be totally changed, if so desired. Many of the IEEE devices have their own
particular secondary address conventions which must be followed. Specific data on these conventions
can be obtained by consulting the manual for that particular device.

The PET tape units have a special set of secondary address rules:
Secondary
Address Operation
Default- 0 Tape is being opened for “read”
1 Tape is being opened for “write”
2 Tape is being opened for “write’” with an “end of
tape’ header being forced when the file is closed.

66

The secondary address can have values over the range 0 through 31.

FILE NAMES

in random storage devices where there is more than one file to be accessed, the use of names to identify
files is mandatory. In the case of tapes, a file name is desireable, even if there is only one file on the tape,

since it facilitates the identification of tapes.

For the two cassette tape units of the PET, a file name may be any combination of up to 128 characters.
When a file name is searched for, it is matched on an ascending character basis.

Assume that an eight character file name COUNTING was specified when writing. If desired, this could
be searched for with an abbreviated name such as COU. The first file header that is found with these
three consecutive characters will then be opened and positioned on. In principle, this could include
unwanted file names such as COUNT or COUNTRY, as well as COUNTING.

It is, therefore, adviseable to specify the complete file name in order to avoid errors.

For other devices which use named files, the individual description of the device should be consulted in
order to ascertain the specific requirements for file name usage.

TAPE CASSETTE OPERAT!ON FOR FILES
The PET devotes special attention to the two tape cassette units that can be attached to it. The tape units

are specially modified so that the PET has control over the motor movement of the cassette.

It can also sense when the PLAY, REWIND, or FAST FORWARD buttons have been pushed; this is done
by means of a single switch mounted in the tape unit.

Note that the same switch is used to sense all three buttons: if any of the three is pushed, the PET will
think that you pushed the PLAY button and will respond accordingly.

Because of the type of mechanism used in the tape unit, the user must rewind, fast forward, stop, load
and eject tapes. He must also put the unit into the write mode by pushing the record button either
simultaneously with, or before the PLAY button is pressed.

The PET has total control over the movement of the tape once the appropriate buttons have been pushed
to engage the motor.

Messages displayed throughout the program will tell the user when it is necessary for him to initiate the
function of play or record. Logic dictates the times when the user should rewind and fast forward.

The two tape units of the PET are handled independently, and the various control lines permit the reading
of data from cassette #1, the reading of data from cassette #2, motor contro! of cassette #1, motor
controt for cassette #2 and a common write line.

FILE RECORDING TECHNIQUE

The data structure embodied in the tape files will ensure the maximum memory utilization and maximum
reliability of recording.

To accomplish this, the PET records data at two audio frequencies in two consecutive blocks of data. All
of the data is totally repeated and by means of error checking techniques incorporated in the PET
software, it is possible for most audio dropouts to be corrected by the operating system utilizing the
redundant data stored in the second data block.

In order to correct for (a), the fact that tape units record at different speeds, and (b), the normal drag
characteristics of tapes, a speed correlation technique is used during reading. To correct for the
individual start/stop characteristics on the tape and syncronize correctly between each block on tape, a

67

single tone is written between blocks. This signal is used to syncronize both position and speed of the
tape. Varying lengths of tone are used at the beginning and between the data biocks of the tape. By
writing about ten seconds of the tone on each opening of a file, the PET automatically corrects for normal
leader. Individual tape blocks are separated by shorter tone durations.

FILE HEADERS

An important assumption underlying the tape system design was that the user would often want to
record more than one file of data on a tape. In order to facilitate this and to allow for proper label
checking, the first physical data recorded on tape for any operation is a file header. This file header looks
exactly the same as the normal data block, except that the first character of every biock on tape contains
an identification character which enables the operating system to differentiate between program blocks,
data blocks, file headers and end of tape headers.

The PET allows for up to 128 characters of a file name to be stored in the file header. This is the name
which is searched for and matched on in the various OPEN/CLOSE options.

TAPE BUFFERS

Another basic premise in the design of the tape operating system was that the user would want to write
tape independently of what is occurring on tape at a given moment. This is accomplished in the operating
system by permanently assigning a block of memory as a data buffer for each cassette. A 192 character
buffer is located at decimal address 634 for cassette #1, followed by a 192 character buffer at decimal
address 826 for cassette #2. The tape file header is written into the buffer first and then written on tape.

Data files are accumulated in the tape buffer until 192 characters are exceeded, then the contents are
either written on tape for write, or if the program is reading tape, the next block of data is read into the
buffer. Tape file headers and all data blocks are, therefore, 192 characters long.

Tape buffers are not used in the case of program files, since these are written onto the tape directly from
the memory in which the program resides. In order to accomodate the variable memory location, the file
header for a program file contains the beginning and ending address for the program. The full program is
written onto tape in the usual form of two consecutive redundant blocks.

MULTIPLE FILES -
In order to have multiple files on tape, the user needs the ability to add files to a tape and also know when

atape is at its end. It is, therefore, important that the operating system give an “end of file”’ and “‘end of
tape’ indication.

In the case of data files, an “‘end of file” marker is appended after the last data character. This is available
to the user in a status word on reading; the “‘end of file” marker is automatically inserted when a write file
is closed.

In the case of program files, because all data is always contained in a single block, the end of the block
signifies the end of the program.

To signify that the end of the tape has been reached, a special separate file header is written. When this
is encountered during a search for files, the PET automatically stops the tape and indicates ““file not
found” to the user. A typical multiple file tape could contain first a data file, then a program file, followed
by an “end of tape’ header as illustrated in the example of figure 7.14.

68

10 seconds of leader

192 character file header block

2 seconds of leader

192 character data block
Data file

2 seconds of leader

RN

Last block of this file

10 seconds of leader

192 character file header block

| 2 seconds of leader
Program file

10 byte
32K byte

program block

2 seconds of leader

optional 192 characters
end of tape header

Figure 7.14. An example of multiple file structure.

LOGICAL FILE /O OPERATIONS: GENERAL
These operations can be subdivided into three steps:

a) Open the file - tell the PET everything it needs to know about the file.
b) Read data from, or write data to the logical files.
c) Close the file - allow the PET to clear up the device and terminate the active file.

These steps are discussed in detail on the following pages.

OPENING FILES
in order to tell BASIC about the file you want to operate on, it is first necessary to open the file. This is

done by the following statement:
OPEN iogical file, device, secondary address, file name

More specifically, the statement consists of the command OPEN followed by the iogical file number,
- then the device number to which the file is assigned, then the secondary address data (if any)
communicated during the interaction of BASIC with the file, and last, the name of the physical file (if any).

69

This statement, or expression, is interpreted by BASIC, and could, therefore, use computed logical file
numbers, device numbers or secondary address data. This capability is extremely useful when handling
multipie file devices such as discs.

The keyword OPEN and the logical file numbers are essential in order to open a file; that is address a
device in preparation for a “read” (INPUT #) or a “write’(PRINT #).

The device number is optional; if not entered, the default value “1” will be used.

A file name is optional, though preferred, for the tape units: however, a name would be essential for a disc
storage unit.

EXAMPLES OF OPEN STATEMENTS
The statement OPEN 1,2,1 is interpreted by the operating system as saying:

Parameter
(LF) Logical file #1 has been opened
(D) Logical file #1 has been assigned to tape unit#2
(SA) Tape unit #2 has been instructed to write on tape
(FN) A file name has not been assigned to the tape record
Similarly, OPEN 3 is interpreted as saying: (F)
Parameter
(LF) Logical file #3 has been opened
(D) Logical file#3 has been assigned to tape unit #1 (default “17)
(SA) Tape unit #1 has been instructed to read from tape (default “0”)
(FN) No file name referred to

If a PET printer is assigned ““4” as a device number, then OPEN 12,4,1 is interpreted as:

Parameter
(LF) Logical file #12 has been opened
(D) Logical file #12 has been assigned to device #4
(SA) Printer has been instructed to print under format statement control
(FN) File name not applicable

Note: The PET has a special system with OPEN for tape files. The opening of the tape is automatic, but
the tape header may not always be written at the beginning of the tape buffer; this implies that the
operating system does not always correctly initialize the buffer point. For consistent and reliable
operation of the tape file header, the following statements should be used:

1) For tape #1: POKE 243,122
POKE 244,2

2) For tape #2: POKE 243,58
POKE 2443

These should be written prior to each OPEN for write.
LOAD

A special case of the OPEN command is the LOAD of a named file: a LOAD is done with the following statement:
LOAD name, device number

The operating system automatically generates an OPEN using the appropriate secondary addresses for
“load”. This OPEN causes the loading device to search for a program name. After the program is found, it is
automatically read from the device and loaded into memory starting at an address specified in the file
header. Most reading errors on the first pass through that program are automatically fixed on the second pass.

At the end of the load cycle, a checksum error, of the total program is made. If a checksum error, or if an

70

uncoverable read error occurred, the operating system automatically prints 2LOAD ERROR and stops
the load program.

If the program load was from direct mode, the clear function is performed at the end of the load, thereby
initializing all variables.

If the LOAD is called from a program, then the PET treats this LOAD as an overlay. The new program is
loaded into the space used by the previous program, but the values of all of the variables are maintained
from the previous program. This allows for one program to call another and pass parameters to the called
programs.

The only restriction on this is that all the called programs must fit in the same, or less space as the first program.

Because BASIC totally replaces the current program, it is not directly possible to have a single main
program and several subroutine overlays, however, by including the main program with each overlay, the
same effect is obtained with some loss of speed.

The combination of the use of named files and overlays allows the writing of very large structured
programs of appreciable complexity.

VERIFY

This very instruction is a special case of LOAD. It should be used after every program SAVE.

The command causes BASIC to go through all the steps of a program LOAD, with the exception that the
data does not get loaded into memory, but, instead, gets compared with memory. If either first or second

pass errors occur, the PET will type out ?VERIFY ERROR which means that the program should be saved
again before it is lost. On VERIFY, the status word has the following meanings

Code Meaning
4 Short block
8 Long block
16 Checksum error on tape
32 Checksum ERROR on tape

SAVE
SAVE also performs an automatic open and close. The SAVE is specified by the statement:

SAVE name, device number

If the physical device is one of the two tape units, the operating system automatically initiates a tape
header and opens a tape file with the appropriate name. The file header is written with the beginning and
ending address.

If the device is an |IEEE-488 device, a special open message is sent indicating that the PET is sending a
program file.

The program is then written directly from its memory locations to the tape or the 1EEE-488 bus.

If the SAVE is on tape, a checksum is computed and also saved and then the whole program is written
again to give the redundant recording. At the end of the program, the tape is automatically stopped and
positioned for the next data.

IEEE-488 SPECIAL FEATURES
In the tape, the program beginning and ending address are stored in and retrieved from the tape file header.

in order to more efficiently use the IEEE-488 data, the starting address of the program is sent as the first
two bytes of data on a SAVE and retrieved from those positions on a LOAD.

71

IEEE-488 OPEN CONSIDERATIONS
If the OPEN command selects a device which has a value of 4 or more, the operating system assumes
that the device is an IEEE-488 device.

If the OPEN does not specify a file name, then nothing is communicated on the IEEE-488 bus. However, if
a file name is specified, the operating system sends a listen attention sequence to the device number
specified in the OPEN along with a secondary address which is the OR of hexadecimal “F0” and the
secondary address specified in the OPEN statement.

Commodore-supplied peripherals, such as the floppy disc storage system, will use this secondary
address and also the file name, which is then transmitted to the listening device in order to transfer data
later to the open file.

TAPE FILE OPERATION MODES

tape files can be opened for two distinct purposes:
a) In order to write from the PET onto tape.
b} In order to read from tape to the PET.

OPEN FOR WRITE ON TAPE FROM PET
The flow diagram of Figure 7.15 outlines the PET-user interaction and PET function when opening a file

for write on tape. The initial block shows that there are two ways of opening the file:

a) OPEN for write-data tape.

b) SAVE-write a program tape.
Note that if the tape file is opened directly from the keyboard, then the message WRITING NAME is
displayed. If the file is opened under program control, and the PLAY and RECORD buttons are depressed
previously, then no message appears on the screen. In this manner, any display material placed there by
the current program is not disturbed.
OPEN FOR READ FROM PET TO TAPE
The flow diagram of Figure 7.16 outlines the PET-user interaction and PET function when opening a file
for reading on tape. The initial block shows that there are two ways of opening the file:

a) OPEN for read data tape.

b) LOAD program into memory.
Note that if the file is opened directly, that is from the keyboard, then the messages PRESS PLAY,
SEARCHING FOR NAME and FOUND NAME are displayed. If LOAD was used, then the BASIC variables
of the loaded program are initialized.

If the file is opened under program control and provided that the PLAY button had been pressed
previously, no messages appear on the video screen in order to disturb material displayed by the current
program. Initialization of the BASIC variables does not occur.

72

Message:
PRESS PLAY
AND RECORD

OPEN for
Write or SAVE

Name —» Header
in Tape Buffer

No

Buttons Down?,

PLAY
nd RECORD™'E

Wait for

Switch
Closure

Program

Direct
or Program
Operation

Direct

Message:
WRITING NAME

Header Goes
to Tape

Figure 7.15. OPEN for write from PET: PRINT#,CMD or SAVE.

OP = operating system takes over.

73

OPEN for
Read or LOAD

Message:

PRESS PLAY

!

Wait for

Switch Closure

Message:

FOR NAME

SEARCHING

Direct

No “Play”
Button Down

Direct
or Program
Operation

Y

Read 192

Character Block

Direct

or Program

Operation
?

Program

Header Found

Direct

Direct

or Program
Operation
?
Program Message:
LOADING
NAME
Read in

Full Program
to Memory

Direct

or Program

Operation
?

Program

Direct

? File Not
Found Error

Direct
Message: Initialize
FOUND NAME BASIC
Variables

Correct
Name?

Yes

No

Figure 7.16. OPEN for read to PET: INPUT# or LOAD

oP =

74

Operating system takes over. B = BASIC takes over.

DATA INPUT: GENERAL
The use of the word “input” in this context implies input of data to the PET from any device.

INPUT#-String and Variable Input
INPUT# is the command used to initiate data transfer from /O devices to the operating system. The

statement format is:
INPUT# logical number file, A,A$,B,BS$,etc.

Where A,A$,B, and B$ are numerical and string variables to be inputted (read) from the selected logical
file to the operating system one character at a time.

Because the rules for the BASIC interpreter apply to these input statements, all carriage returns,
commas, terminate fields, nulls, preceeding bianks (except in strings), and other control characters
are automatically deleted.

it is not always possible to mix both numeric and alphabetic data on the 1/O device. If a numeric field is
specified, only numeric data in the standard form expected by BASIC is accepted, otherwise a ?BAD
DATA ERROR meesage is displayed.

If there is any ambiguity about the data coming in, the user should input only to strings and then use the
various string manipulation commands to process the data into the appropriate variables.

Example of Input# Statement
If X represents a series of 50 numbers stored on atape file named VECTOR and we assume that the PLAY
button has just been depressed on the tape unit#1. Then the following program wiil read the 50 numbers
one at a time and display them on the video screen.

10 OPEN 1,1,0“VECTOR” Open logical file #1. Assign file to cassette 1. Open tape for
“read”. Look for physical file named VECTOR.

20 FORK=110 50 Read 50 numbers at one time from cassette 1.

30 INPUT#1,X

40 PRINT X Display numbers on video screen

50 NEXT K

60 CLOSE 1 When 50 numbers have been read, close logical file #1.

GET #CHARACTER TRANSFERS
Not all devices transfer data in a form which is accceptable directly to BASIC. There is a series of binary

data and combinations which BASIC ignores and although many IEEE devices do correctly respond
with data formats which are acceptable to basic, not all do.

In addition, in some cases, it is desirable for the programmer to have immediate access to characters as
they are transfered to the system. GET- fetches from the IEEE-488, or tape device, a single character at a
time, putting a character in a fieid specified following the GET#. THE FORM 1S:

GET# logical file, field
TAPE INPUT
When reading from the tape file, the data comes to the user I/O independent. Each time BASIC starts on
INPUT# or GET# from a logical device which was opened for read on tape 1 or 2, a special subroutine is
called, which initiates tape input.

As each character is requested from BASIC, it is fetched from the appropriate tape buffer. When the
buffer is empty, the tape input routine suspends the user program and reads the data block from tape
into the buffer and then transfers the next character to BASIC. If a read error occurs, it is noted in the

75

status word.

When the end of file mark is encountered in the buffer, the end of file position of the status word is set on
and carriage returns are forced automatically out until the command is finished.

At the end of a command, BASIC calls another routine which reinitializes the input to be the keyboard and
tells the end of file operation that a command is complete.

|EEE-488 DEVICE INPUT SEQUENCES
Al INPUT# or GET# commands go through the same sequence. When the command is first encountered,

the |EEE-488 input initiation routine is called, which sends a talk attention sequence to the device and
secondary address which was specified for that logical file in the OPEN sequence. At the end of the
attention sequence, the PET establishes itself in a listener mode and attempts to wait for a DAYV signal
indicating a single character has been received. If the DAV is received within 65 milliseconds, that
character is handed to BASIC and/or to the other program calling the |EEE-488 routine. Each time the
IEEE-488 routine is called, it will go through the same sequence of getting a single character while
waiting for a time out to occur. If the bus does not respond in 65 milliseconds, then the IEEE-488 routine
will automatically terminate the sequence; giving a read error in the status word to indicate that it has
terminated the sequence.

If during the course of reading the character, the IEEE-488 routine senses an EOl line, it will indicate the
end of information in the status word and will continue to return carriage returns, until the command it
has been currently operating under has been terminated. At the end of the command, BASIC calls a
termination subroutine which reinitializes the device to the keyboard and sends an untalk to the
|EEE-488 bus, thereby, freeing the bus for the next command.

INPUT BUFFER LIMITATIONS

Although data is transferred from the operating system one character at a time, in order to edit, BASIC
accumulates these characters into an 80 column input buffer. This buffer must be terminated by a
carriage return.

On the PET, should more than 80 characters be read, the operating system will maifunction, as the
operating system variables are overwritten. The PET can be made to function again by switching the line
supply off and on.

This constraint must be kept in mind when using tape and disc file systems.
This means that carriage returns must be written on tapes, discs, or other HO devices in such a way that
not more than 80 characters per field are written without being separated by carriage returns.

If an /O device sends more than 80 characters, the GET command can be used to build your own string
without running into the buffer limitation.

DATA OUTPUT: GENERAL
The use of the words “print’’ and “write” refers to data output from the PET to any device.

PRINT#
The command PRINT# must be followed by a logical file number, and then a comma to separate the data
that would follow PRINT:

PRINT# logical file number, data
Data is transferred a single character at a time to the physical device correlated with the logical file
specified in the relevant OPEN statement. iiany of the file delimiters such as commas are automatically

76

deleted by BASIC; although this does not greatly effect the printing, it should be remembered that when
reading back from tape or another /O device that file delimiters must be forced. This forcing can be done
by inserting a CHR$(44) or " between fields or by only printing single fields in each PRINT# statement
which will force carriage returns between fields. Example:
instead of writing
PRINT#LF,A;B$;C$
which will be sent as
ABSCS
with no delimiters:
PRINT#LF,A;CHR$(44)B$;CHR$(44),C$
or: ‘
PRINTH#LF A“.:BS$;",";C$
which will output: (Note: CR means carriage return)
A,B$,C$,CR
or:
PRINT#LF,A
PRINT#LF,B$
PRINT#LF,C$
which will output:
A CR B$ CR C$ CR

Because BASIC always formats outputs to any devices as though it were outputting to the screen,
PRINT#LF,A,B has several skip characters between the values of A and B, while A;B does not have any
extra skips.

An exception to this rule is the tape where the first skip on output is supressed.

Note: Although both the INPUT# AND PRINT# commands operate in virtually the same way as their
equivalent INPUT and PRINT statements do in BASIC, the abbreviated command ? which can be used in
place of PRINT, does not apply to PRINT#. ?# and PRINT# are recognized and reduced to two different
token characters when processed by BASIC. ?# will look like PRINT# when listed but gives 7SYNTAX
ERROR when an attempt is made to execute it.

Examples of the PRINT# Statement
This program will print the series of numbers 1,2,3...50, one at a time on a PET printer.

100PEN 5,4,0 Open logical file #5. Assign logical file #5 to device #4 (PET
printer) in normal print mode corresponding to secondary
address “0”.

20 FOR K=1to 50 Print the series of 50 numbers on printer.

30 PRINT#5,K

40 NEXT K

50 CLOSE 5 Close logical file #5.

To write the above series of numbers on a cassette in tape unit #2, only the OPEN line would have to be
modified, if the same logical file numbers were chosen:

100PEN 5,2,1 Open logical file #5. Assign logical #5 to device #2 (tape unit
#2) with a write without “‘end of tape” designation
corresponding to secondary address '1’.

77

20 FOR K=11t0 50 Record the series of 50 numbers on tape.
30 PRINT#5,K

40 NEXT K

50 CLOSE 5 Close logical file #5.

In the above cassette example, the data would be accumulated in a 192 character buffer one character at
a time. When the capacity of the buffer is exceeded, then data entry is suspended, the tape started, and
the buffer contents written to tape. The buffer is initialized to accept up to 192 characters and then the
program is allowed to proceed.

Note: Not all tape units currently operate with the same START/STOP characteristic as defined for the
original tape operating system. In order to obtain reliable operation of the tape recorders, the 192
characters of the buffer should be monitored by the program. Prior to transferring 192 characters, the
programmer should turn on the appropriate cassette motor and then wait for at least .1 second

before transferring the last character.

There are several ways to accomplish this. The simplest is to just POKE 59411,53 for cassette #1 and
POKE 59456,207 for cassette #2 after every PRINT statement, this keeps the motor on all of the time and
eliminates the problem.

On the other hand, if your programs have time consuming functions like human input, sorting, or other
long program run times, you should not run the motor all the time, but obtain the delay either putting a
delay loop before each print, or turning the motor off with a POKE 59411,61 for cassette #1 or a

POKE 59456,223 for cassette #2 before the long function and turning it back on after it.

IEEE-488 BUS OUTPUT
The PRINT# command causes BASIC to call an output subroutine which initializes an IEEE-488 device for

output. The first step in the command is that the PET reassigns its normal output from the screen device
to the physical device that was chosen for the logical file in the open routine. Alisten command is sent on
the IEEE bus to the physical device and a secondary addressd specified for that logical file in the OPEN.

BASIC then hands one character at a time to another subroutine which proceeds to transfer that
character over the bus with the PET acting as a talker and all addressed devices responding listeners.

When BASIC has finished the PRINT#, another subroutine in the operating system is calied and the PET
sends an “unlisten’” command to the entire bus and restores the primary address to the screen. This frees
the whole bus for the next operation.

This unlisten sequence also sends an EOI signal on the bus, along with the last character sent from
BASIC. To accomplish this, each character is stored in a buffer prior to transmission by the IEEE routines
and the previous character is sent.

CMD.COMMAND
Normally, each print command deals only with one logical device and at the end of the command entire

bus is unlistened. In some instances, it is advisable to have more than one device on the bus; in order to
facilitate this, the special command CMD is provided. CMD is virtually identical to PRINT#, except that at
the end of the data transfer, the unlisten routine is not called, thereby leaving the device on the bus as
a listener.

The operating system continues to treat the last device to be commanded by the CMD as the primary
output device for BASIC. PRINT or LIST commands are then directed to this primary device, rather than to
the video screen. More specifically, the CMD of the printer device, followed by LIST, results in hard copy

78

printed listing, instead of a video screen listing. However, since neither the CMD nor LIST command
terminate bus operation for the device, a PRINT# is required to terminate a CMD command.

Examples of a CMD Command

To list:

OPEN 3,4 where 4 is the printer device number

CMD 3

LIST will list just the same as the screen, except on the printer.
to print and write a disc at the same time:

*CMD 3 where logical file 3 is open to the printer.

PRINT#15,A,B,C where 15 is the floppy disc logical file number

(previously opened).
will result in A,B, and C being stored on the floppy but also being displayed on the printer.

To monitor an input device:
**CMD 3 turn on printer
INPUT#15,A,B,C read from floppy

This will result in the data from the floppy being transferred to A, B and C but also being printed as they
are being transferred.
CLOSING FILES
Any logical files which have been opened during a program should preferably be closed when no longer
required, and in the case of tape or disc files, must be closed before the program ends. The following
should be kept in mind:

a) If the total number of logical files currently exceeds ten, then loss of

PET operation will result.

b) If a logical file assigned to a tape unit is not closed, no “end of file”

mark will be recorded at the end of the physical tape file. If this tape is then

loaded into memory, the PET will have no way of knowing the file has

ended, and if the unwanted and erroneous data is present from a

previous recording, it wili also be read into memory.

EXAMPLE OF A CLOSE STATEMENT
To close any file, the following simple statement is sufficient:
CLOSE Jogical file

If it is required to close logical file number 5, then this becomes:
CLOSE 5

TAPE FILE CLOSURE
If a file had been opened on the tape, there are two operations that occur: an “end of file” marker is

recorded in the next data character, then the tape buffer is forced out onto the cassette.

If during OPEN the “end of tape” option was chosen, an “end of tape file’’ header block is also
forced out on the cassette.

*Must be given each time because PRINT# unlistens the bus.
**Need not be given each time, more code can be inciuded between instructions.

79

|EEE-488 NAMED DEVICE CLOSURE
For IEEE-4888 devices, which were opened with file names, a special listener command sequence,

with the special secondary address of thehexadecimal EO OR’ed with the secondary address from the
OPEN is sent. This allows devices such as disc files to be closed by the peripheral controlier.

ERROR DETECTION: GENERAL
The basic concept of the PET operating system is that the user will be allowed to operate in a free-form

format; reading and writing on tapes, discs, and printers, in the manner that is most comfortabie for him.
Because /O is totally free-form, it is most important that the operating system should have means of
informing the user when transmission errors or end of data conditions occur.

STATUS WORDS

In order to facilitate INPUT/OUTPUT operation error detection, the PET uses the “status word” concept in
which a byte in memory is manipulated by each of the /O operations for the PET, and can be sampled by
the programmer at any time by calling the function ST. Each bit in the staus word has a general meaning
for all operations and a specific meaning for the individual I/O device.

Table 7.17 shows the errors as a function of the ST word value for the tape cassette units. |EEE read/write
operations, tape verify and load operations.

ST ST Tape
Bit Numeric C‘;:se;‘e IEEE R/W Verify
Position Value ea "+ Load
0 1 Time out
on write
1 2 Time out
on read
2 4 Short block Short block
N _3:*7) 8 Long block Long block
4 16 Unrecoverable Any
read error mismatch
5 32 Checksum Checksum
error error
6 64 End of file EOI line
7 -128 End of tape Device not End of
present tape

Table 7.17. Status Word (ST) values correlated with
tape cassette, unit and IEEE bus read/write errors.

IEEE DEVICE ERRORS
There are basically three errors that can occur during an IEEE-488 transfer. First, the entire bus does not

respond to an attention sequence. If this occurs, the IEEE-488 subroutine sets the DEVICE NOT PRESENT
bit (7 or -128). The PET also terminates the current program with ?DEVICE NOT PRESENT ERROR. If the
bus responds correctly to the attention, but when the PET goes to write the first character to the bus and
the physical device is not present as indicated by having NRFD or NDAC low, the PET, again, gives a
device not present indication.

The second error occurs during the process of transferring data to the device. The bus does not respond

80

in the appropriate times andlor if it ceases to respond by means of bringing NRFD and NDAC both high, a
write error indication is given in bit 0.

The third error occurs when during read on an IEEE-488, the IEEE device has not sent DAV in less than 65
milliseconds; bit 1 of the status word is then set. Whenever the EOI line is encountered, the subroutine
sets the bit 6 on in the status word and continues to force carriage returns.

TAPE UNIT ERRORS
The cassette only checks data on read. The errors deleted are:

1) SHORT BLOCK (4).When reading a block from tape, a spacer tone was
encountered before the expected number of bytes has been read from that
block. Possible cause: attempting to read a short load file as a data record.

2) LONG BLOCK (8).When reading a biock from tape, a spacer tone was not
encountered after the expected number of bytes had been read from that
block. Possible cause: reading a long load file as data.

3) UNRECOVERABLE READ ERROR (16).Cause: more than 31 errors on the
first block of redundant blocks-or an error that could not be corrected
because it occured in the same place in both blocks.

4) CHECKSUM ERROR (32).After a LOAD or reading of data, a checksum is
computed over the bytes in RAM and compared to a byte received from the
input device. If they do not match, this bit is set.

5) END OF FILE (64).This bit is set when the end of data file mark is
encountered in a tape record.
6) END OF TAPE (-128).An EOT record was read.
EXAMPLES OF ST USE ,
As you can see, there is no status that the PET detects for the writing of tapes, nor errors detected for

printing to and reading from the screen. There is an error on writing data out to the IEEE-488 and there is
also a series of errors detected on inputting from the |EEE-488 or from tape.

The normal programming technique is to follow INPUT# or a GET# by either a test or storage of the value
of status. As this is only a single byte of memory and the status changes on each new /O command, the
status is very transient.

100 INPUT#2,A

110 INPUT#5,B

120 IF ST=0 THEN 200

This code only checks the result of the transfer of data from logical file 5. The results of reading logical
file 2 is forever lost. Similarly:

100 INPUT#2,A

110 PRINT A

120 IF ST=0 THEN 200
In this case, the ST reflects the print status, rather than the results of reading #2.

A correct way to use ST is the folliowing:
100 INPUT#2,A,B,C
110 IF ST =0 THEN 200 process normally
120 IF ST =64 THEN 300 end of data processed with no errors

81

130 IF ST =2 THEN 400 time out with no errors

Each error can now be processed with the following:
140 IF ST AND mask THEN Mask represents the bit being tested

POLLING TECHNIQUES
One technique to poli slow IEEE-488 devices such as sampling devices, which take many minutes to

respond, is to use the INPUT# from the device; then if the status indicates time out, process other
routines or loop on the INPUT # until no error occurs. If there are no errors, the correct data has been
finally read and one can process that data information.

By using this sampling technique, a whole series of slow devices can be serviced, along with running a
foreground program by use of the real time clock (T1,TI$) and the INPUT#/timeout error sequence, to
occassionally poll devices.

DEFAULT PARAMETERS

Parameter Default Value Defauit Operation
Device & D=1 Cassette #1 selected
Secondary SA=0 On tape files open for read
address On IEEE-488 devices, no
secondary address is sent.

Table 7.18. Default values.

Equivalent
Statement (Default) Operation
Parameter Values

OPEN 1 OPEN 1,1,0 Open logical file =1 for cassette %1 read
no file name

OPEN 1,2 OPEN=1,2,0 Open logical file #1 for cassette #2 read
no file name

OPEN 1,2,1 OPEN#1,21 Open logical file =1 for cassette #2 write
no file name

OPEN 1,21, OPEN=1,2,1, Open logical file #1 for cassette %2 write

“DAT" “DAT" file named “DAT"

Table 7.19. Example of default parameters.

INTRODUCTION TO THE IEEE-488 BUS
This bus consists of 16 signal lines that are divided functionally into three groups, those are:

a) The data transmission bus
2) The control bus
3) The management bus

Furthermore, the IEEE bus can support three classes of device:
a) Talkers: at any given moment, only one device is permitted to transmit
data to the data bus.
b) Listeners: as many devices as required may receive data
simuitaneously from the bus.
c) Controller: the PET is the onl/y controller allowed on the IEEE bus.

82

BUS/DEVICE CONTROL
The line-pin connections for the 12 position, 24 contact edge card connector, emanate from the PET main

assembly board (see Table 7-19). For further information, please refer to Figure 7.2
Certain physical limitations should be noted when connecting devices to the |EEE bus:
a) The maximum advisable bus extension from the PET is 20 meters.
b) The maximum interdevice spacing is 5 meters.
¢) The maximum number of devices is 15.

PET PET
Contact Bus IEEE Contgc.t La:l)el.
Identifi- Label Identifi- Description
cation cation
1 DATA DI01 1 Data INPUT/OUTPUT LINE #1
2 D102 2 Data INPUT/OUTPUT LINE %2
3 D103 3 Data INPUT/OQUTPUT LINE #3
4 D104 4 Data INPUT/QUTPUT LINE #4
5 MANAGER EOI 5 End or identify
6 TRANSFER | DAV 6 Data valid
7 NRFD 7 Not ready for data
8 NDAC 8 Data not accepted
9 MANAGER | IFC 9 interface clear
Same as PET reset
10 SRQ 10 Service request
11 ATN 11 Attention
12 SHIELD 12 Chassis ground and 1EEE
cable shield
A DATA D105 13 Data INPUT/OQUTPUT LINE #5
B DI06 14 Data INPUT/OUTPUT LINE #6
C D107 15 Data INPUT/OUTPUT LINE #7
D D108 16 Data INPUT/QUTPUT LINE #8
E MANAGER | REN 17 Remote enable (REN) always
ground in the PET
F GROUNDS | GND6 18 DAV ground
H GND7 19 NFRD ground
J GNDS8 20 NDAC ground
K GND9 21 IFC ground
L GND10 22 SRQ ground
M GND11 23 ATN ground
N LOGIC GND 24 Data ground (D101-8)

Table 7.20. IEEE bus group, label and contact identification number.

THE DATA BUS
This bus is comprised of 8 bi-directional lines that transmit the active low data signals D101-8. The

slowest device in use on the bus at a given time controls the rate of data transfer; the mode of transfer is
one byte at a time, bit paraliel.

Peripheral addresses and control information are also transmitted on the data bus. They are
differentiated from data by ATN (true) d‘uring their transfer.

The most significant bit (MSB)is on line D 108.

For an explanation of signal abbreviations such as D1-08, see Figure 7.23.
Data Transmission Modes
All possible bit patterns are valid on the data bus when sending data to devices.

THE TRANSFER BUS
This three line bus controls the transfer of data over the data bus. The signals transmitted are used in

83

the handshake procedure outlined in 7-21.

These signals are:
a) NRFD Not ready for data
b) NDAC Data not accepted
c) DAV Data valid

Note that the talker originates the DAV signal and the listeners the NFRD and NDAC signals.
See Table 7-23 for detailed description of signals.

The Handshake Procedure

When a talker transmits a data byte to one or more listeners, this control procedure is used in order to
ensure that the operation is successful.

The essential function of the handshake is to ensure;

a) All listeners are ready to accept data.
b) That there is valid data on the data bus.
c) That the data has been accepted by all listeners.

The transfer of data occurs at a rate determined by the slowest active device on the bus; this allows the
interconnection of devices which handle data at different speeds.

The sequence of events that occur during the transfer of a data byte from the talker to the listeners is
shown in the fiow diagram of figure 7-21.

Not Greater than 64 msec.

o\

I<—————-> ———

NRFD __l

——

Ready for Data
Not Ready for Data

— —

(Listener) 1) (é |

[

'
DAV ! : Data Not Valid
(Tatker) J Data Valid

@ e

: ' — Data Accepted
NDAC) Data Not (Being)
(Listener) | B6) () Accepted

1

|

1 Bit Value = @
Qata Bus :)_ High Impedance
Signats 2IN_1 Bit Value = 1

Data Signal
Settling Interval

Figure 7.21. Transfer bus handshake sequence.

84

COMMENTS TALKER LISTENER COMMENTS
Not Ready
Data on
Data Bus DAV -» High mg;g = tm for Data
Not Valid Data Not
Accepted
NRFD and £ Ready to
NDAC High rrov Accept Data
No
No
New Data on
Lines DI101-8 Al
Listeners
Ready No
All
.— — —| NRFD —= High Listeners
are Ready
for Data
Data i . Is the
ata is . Data Valid
Valid -
No
Yes
Data Byte
Accepted
Not ready
NRFD — Low] for Data
- Data
- —I NDAC —» High I Accepted
Data Not . DAV
Valid DAV —=High | — —— j— — — High
No
Yes
Further End NDAC —» Low Data Not
Data Accepted

Figure 7.22. Sequence of events during a data byte transfer from the talker to the
listners. Broken lines indicate the testing of transfer bus signal logic levels.

85

Figure 7-22 shows the relative timing of transfer bus signals during a typical handshake; the bracketed
numbers in the following sequence refer to the changes in signal logic levels in the Figure:

1) NRFD goes high
next byte of data.

(false) indicating that all listeners are ready for the

2) The talker puts the next data byte on the data bus and allows the data

signals to settle.

This could happen before, after or during (1).

3) The talker tests NFRD, when it is found to be too high, the talker makes

DAV iow (true)to

inform listeners that the bus data is now valid.

4) As soon as a single listener detects that DAV is low, that listener sets
NRFD low; data is now accepted by all the individual listeners at their own
rate, each of whom release NDAC as they accept the data.

5) NDAC goes high
the data.

(false) when the slowest of the listeners have accepted

6) The talker sets DAV high (false) indicating that the bus signals are now

invalid.

7) The listeners note that DAV has gone high and sets NDAC
low (true) completing the handshake. When each listener has processed
the data, they release NFRD. This terminates the sequence for the first
data transfer. The sequence will repeat again, beginning at (a), until all
required data transfers have been completed.

PET/IEEE Bus Timing Constraints

The foliowing limitations shouid be noted in order to avoid a loss of data:

a) When PET is a listener, it expects DAV to go low within 64 miliiseconds
after it has set NFRD high.

b) When PET is a talker, it expects NDAC to go high within 64 milliseconds
after it has set NRFD high. ‘

If these limitations are exceeded, the PET ceases to transfer and sets the appropriate status word (ST).

See Table 7-24.
THE MANAGEMENT BUS

This group of five signal lines controls the state of the data bus and defines its signals; these can be
concerned with data, addresses, or control information (device commands).

The five management signals are:

ay ATN Attention

b) EOl End or
identify

c) IFC Interface
clear

d) SRQ Service
request

e) REN Remote

!

enable

Assigns devices to act as listeners
or talkers.

Indicates that the last data byte is
being transferred.

Initializes the data bus. Talkers and
listeners set idle. Same signal as
reset in the PET.

Device tells controller that service is
required. Not implemented in BASIC
but available in PET.

Permanentiy tied to ground in the
PET.

86

|IEEE SIGNALS AND DEFINITIONS
The 16 transmission lines of the IEEE-488 bus are each assigned a specific signal. Table 7-23 gives the

bus group, name, abbreviation and functional description for each of these signais.

LOGIC LEVEL CONVENTION
The “true” or logical “1”is low with common collector type outputs. This allows any device to hold the

bus in the “true” or logical “1” state.

Bus Signal N Functional
Group Abbrev. ame Description
Manager ATN Attention The PET (controller) sets this

signal fow while it is sending
commands on the data bus.
When ATN is low, only periph-
eral addresses and control
messages are on the data bus.
When ATN is high, only pre-
veiously assigned devices can
transfer data.

Transfer DAV Data Valid When DAV is low, this signi-
fies that data is valid on
data bus.

Manager EOI End or When the last byte of data is

ldentify being transferred, the talker

has the option of setting EOI
fow. The PET always sets EOI
low while the fast data byte is
being transferred from the

PET.
Manager IFC Interface The PET sends its internal re-
Clear set signal as |FC low (true) to

initialize all devices to the idle
state. When PET is switched
on or reset, |IFC goes low for
about 100 milliseconds.

Transfer NDAC Data Not This signal is held low (true)
Accepted by the listener while reading.
When the data byte has been
read, the listener sets NDAC
high. This signals the talker

that data has been accepted.

Transfer NRFD Not Ready When NRFD is low (true},
for Data one or more listeners are not
ready for the next byte of
data. When all devices are
ready, NRFD goes high.

Manager SRQ Service Not impilemented in BASIC,
Request but available to the PET user.

Manager REN Remote REN is held low by the bus
Enable controller. The PET has a pin

grounded that keeps REN
permanently low.

Table 7.23. |IEEE-488 bus signal.

Table continued on next page.

87

Table 7.23. IEEE-488 bus signal (continued).

Bus Signal Name Functional
Group Abbrev. Description
Data D101-8 Data input/ | These signals represent the bits

output lines | of information on the data bus.
1 through 8 When a D10 signal is low, it
represents 1 and when high .

General GND Ground Ground connections: There
are six control and manage-
ment signal ground returns,
one data signal ground return
and one chassis shield ground
lead.

STATUS WORD (ST)
ST is a BASIC variable which can be used to check the outcome of INPUT/OUTPUT operations. ST can

have certain values over the range -128 to 127. Table 7-24 shows the status code that appertains to the
|IEEE-488 bus.

ST Error Explanation
1 Time The |EEE device has not responded within the 65
out on milliseconds time out inverval,
listener
2 Time The |EEE device has not provided an active “‘data
out on vatid’’ signal {(DAV low) within the 65 millisecond
tatker time out interval.
64 End or EO! has gone low (true), on the last byte of data
identify being transferred on |IEEE bus. Note that all devices
(EOH) do not generate an EOI signal. Consult relevant
instrument manual.
-128 Device Device did not respond when addressed; this gen-
not erates an error message and the operating system
present returns the PET to BASIC command level.

Table 7.24. ST status code for IEEE-488 bus.

IEEE-488 REGISTER ADDRESSES
Table 7-24 shows the |IEEE-488 hardware addresses for the PET. An attempt to control the bus by means

of the PEEK and POKE commands will fail, if the time out intervals for the 488 devices are exceeded.

Hex Decimal .

Address Address Bits IEEE Mode
E820 59424 0-7 Di101-8 Input
E822 59426 0-7 DI101-8 Output
E821 59425 3 NDAC Output
E823 59427 3 DAV Input

7 SRQ
E810 59408 6 EOI Input
E840 59456 0 NDAC Input
1 NRFD Output
2 ATN Output
6 NRFD Input
7 DAV Output

Table 7.25. IEEE-488 hardware addresses and signal information.

88

(INEL NLV HLIM d3AIZ03H ANV LN3S)
‘uoljelado o , 3po puewwo),, 10} sjuawubisse apo) ‘9z’ siqe)

‘SIA0NW vIVA B ANVWWOD H108 Nt J3SN SHILOVHVYHD 11V 1S HONOYHL 2 NWNTOD) 1389NS ISNIQ (

=)

(595) ANVWWOD AHYANODIS SIHINDIY &
dNoy¥o L010 o1g g @
ANYINWOD JOVSSIW IOVAHILNI OSW 1) SILON
AYVANOOIS (D0d] dNOHD ONVWWOD AHYWIHd :
| |
/ \/ A
(OVL) (LAl (900 190V
dNOYo drnogo dNOYo dNOHO
$$38AQYV $S380av GNYAWOD ONVIWIWOD
HIVL N3LSIT TVSHIAINA 03$53HAQY
| | ! l
/ \ / oAl \/ !
30 | 5l 5 s ST T L
~ u N : : SH 0s vi ol
| = ! z | W L W - 59 4O £l Ljofg
S " T [= Ll 1| 2 = ‘ S4 | 44 4! oot |
lm | m » N | 3 s I 353 1A L t1o
lw ’ e ! m z m o m z . ans 41 0L 0 |tjo]|
m Al m 2l A& ! zl1.8 |2 i Jaas] w3 | 1o1] i 6 Ljojo |t
— T n) o
= x = 4 z X ES H z 8 z i dS | NVO | 139 SH 8 0|06 |t
| m m 5 jw] c v} o
3 m 3] Olm © b} © 4 ° . 813 133 { Lit]igo
% A < 4 = A o 4 o 9 o 3 NAS A0V 9 0jtjL]o
~ 4 - o o = - N -
2 n =2 a m i m 3 m g m g Ndd | XVN |® ddd | ON3 5 Loyl |o
—9 2 < < < <
3 P 5 L a Q a ¥ a S 100 | vda 20s | 103 14 oftolt o
-8 Q m m m a
LS s S > S 0 € €00 X13 e Llijolo
i ! i 4 Y 8 4 . zoa XLS [4 olljo]o
b e 0 v L i o] 10a]| io| HOS L tjojo]o
d d) 0 dS | 370 NN e ojojojo
1 MOY tpr gt
t i 8 v ¢ ¢ : O | - nwn1oo [1a|zales|va
L 0 L 0 L 0 L 0 sq
OSW| L {OSW| L [DSW| O |9SW| O |9Sw| L |O9sw| L |osw| o OSW | 0
L L 1 1 0 0 of © 0

89

NOTES

90

Chapter 8. USE OF THE PET FOR MACHINE LANGUAGE PROGRAMMING

Machine language programs execute much faster than do BASIC programs which have to be interpreted
first then executed. On PET, machine language can be used to communicate with the user port, play
music, or write the screen memory with biinding speed. If you have never programmed the 6502
microprocessor, it is probably adviseable that you get hold of the two books mentioned in Chapter 1
before you proceed with this chapter.

In PET there are two ways to create a machine language program in memory and execute it. The first is by
BASIC. As previously discussed, there are two BASIC commands, PEEK and POKE which give equivalent
machine language operation relative to controlling input/output instructions or influencing or sampling
individual memory locations. The second method to program is by a monitor.

A monitor essentially has only three functions: examine and deposit bytes in memory, and branch to
execute code. These functions are available as PEEK, POKE and SYS in BASIC. The chief limitation of
BASIC is that all bytes must be converted to decimal before use. A monitor available for PET aliows one
to work entirely in hexadecimal notation but the 6502 does not care what base you work in because all it
sees is binary. The PET monitor does have some other useful features which we will discuss later.

MACHINE LANGUAGE PROGRAMMING FROM BASIC
It is possible to build into a string of memory locations by means of a POKE command, a set of

instructions which are a machine language subroutine which is usable by an individual program. To
implement these subroutines, there are four basic considerations: (1) what the subroutine is supposed to
do, (2) how to implement it, (3) where to put the program, and (4) how to communicate the subroutine from
BASIC. The decision on what the program is to do and how to implement it is left to the programmer and
the programming manual (6502).

To locate the code, you must decide whether you have a small program that is to be used only temporaril
or whether it is a program you want to have operational throughput the entire time the BASIC program is
operating in the machine.

To understand.how best to keep the program in memory, we should review the memory map of the PET.
All the zero page programs address are consumed by the operating system and are usually being
changed throughout the programs. Between the normal use of stack and tape 1/O corrections, ali of page
1is used. Page 2 has a series of variables which are again used throughout the program. However,
memory locations 634 through 1023 are used for the first and second cassette buffers. If a program is not
using tape /O, then these areas will not be touched by BASIC.

If only the first cassette is used, the second cassette buffer is available. If both the cassettes are used
during the program, or if this area is not enough into which the user is to write some code, then the space
between the end of the BASIC program and where BASIC stores its variables is the space that is available
to the programmer. At any time during execution of the program, a PEEK into location 124 and 125
indicates the beginning location of the BASIC variables. Working back down these with a small safety
margin which is proportional to the amount of data space that is used in the program, is a memory area
which is not affected by BASIC during execution. These are memory locations which are counted by the
FRE statement. Once programs have been written and debugged, this space is as useful as are the
cassette locations.

The final problem is how to get the program into the memory location. Although by use of the machine
language monitor, machine language programs are loadable, this involves a two-step process for the
user. First, the machine language program must be loaded, followed by the loading of the BASIC

91

program. Obviously, this technique does not work at all, if the program is to be loaded into the cassette
buffers. Another technique is to assemble the program, into the BASIC program, by means of putting the
machine language program into data statements. The data statements can then be read at the beginning
of the execution of the BASIC program and POKEd into the appropriate memory locations.

SYS COMMAND
When it is necessary to transfer control to the machine language program, there are two ways to do it.

The preferred approach is the SYS command which transfers control totally from BASIC until control is
returned by means of a routine from subroutine instruction. It can be used to transfer control to any other
program such as a machine language monitor or future languages when they become available. If the
following code is encountered
10 SYS (634)
at Line 10, BASIC will hand control of the computer to the program located at 634. The general format
for the SYS command is
SYS (start address)

The start address can be a computed value, in either case, it must result in a positive number not greater
than 65535. NOTE: Execution of machine language code, removes almost all protection that the ROMs
has built into it to allow the BASIC interpreter to continue functioning without regard to user error. As
soon as you transfer control from BASIC to your own program, any mistakes which occur in your program
may cause the machine to cease to function. In order to help solve this type of problem, you should use
the machine language monitor to develop anything other than the most trivial amount of code. In any
case, when control of system is lost, it can be regained by repowering the system on.

in order to return from the SYS command, the last instruction in the program, which is executed, should
be a RTS instruction. BASIC will then start interpreting the next statement after the SYS command. In
order to pass the variables of data back and forth between the user program and BASIC using the SYS
command, data has to be POKEd into temporarily undisturbed memory locations during the execution of
the BASIC routine. The results of the SYS operation woulid have to be PEEKed back into the program that
foliows the call to SYS.

USR FUNCTION
There are some programs, particularly mathematical ones, in which it is easier to pass parameters

to/from BASIC using the USR function and to get the results directly processed in BASIC. USR is
specified with a parameter. BASIC evaluates the expression for its parameter and leaves the results of
the evaluation in a floating accumulator which BASIC uses for all of its functions. It is noted that if no
parameter is passed, the floating accumulator is not initializeable by the user or by any other techniques
as it is used by BASIC in a variety of ways prior to executing the USR function.

USR calls a routine, which executes a machine language program. Aresult in the floating accumulator to
be analyzed by the BASIC expression. Because USR is a function, it is possible to include the function
called user as part of a BASIC instruction as in: IF USR (A)=1, THEN etc. In this case the parameter A
will be passed to the USR function in the floating accumulator. The resulting floating accumulator, when
the user returns to BASIC, would be compared to 1 and the logical function would be executed.

The SYS command is more useful for transferring control for machine language processing in which
variables are not being acted on. USR is more useful when one is trying to implement a new BASIC
command. This is an important consideration in using USR. USR uses preassigned variable locations:
locations 1 and 2. These locations must be initialized with the hexadecimal value of the starting address
in which the machine language program is stored. This can be done anywhere throughout the program

92

with a POKE of the decimal equivalent of the lower address to location 2 and POKE of the high order ad-
dress in location 2. Example:

10POKE 1,122
20POKE 2,2
30 IF USR (A)=1 THEN etc.

USEFUL BASIC SUBROUTINES
There are a series of subroutines in BASIC which can allow the machine tanguage program to evaluate

values in the floating accumulator. These functions are called jump to Subroutines instruction (JSR) to
the address.

The parameter specified in the USR functon is evaluated, converted to a binary floating point equivalent
with signs, exponent, and mantissa, and placed in a series of 6 bytes which we will call the floating
accumulator

$BO sign and exponent
$B1 mantissa MSB
$B2 mantissa

$B3 mantissa

$B4 mantissa

$B5 mantissa LSB
$B6 sign of mantissa

The exponent is computed such that the mantissa 0=1Xx 1. It is stored as a signed 8 bit binary + $80.
Negative exponents are not stored 2’s complement. Maximum exponent is 10%. Minimum exponent is
10~ * which is stored as $00. A zero exponent is used to flag the number as zero.

Exponent Approximate Value
FF 10%
A2 10
7F 107
02 10
00 10~ %

Since the exponent is really a power of 2, it should best be described as the number of left shifts
(EXP>$80) or right shifts (EXP< =$80) to be performed on the normalized mantissa to create the actual
binary representation of the value.

Since the mantissa is always normalized, the high order bit of the most significant byte is always set.
This guarantees always at least 40 bits precision which is roughly equivalent to 9 significant digits plus a
few bits for rounding. If a number has a vaiue of zero, itmay not always have zero bytes in the mantissa.
The only true flag for a zero number is the exponent. See Figure 8.1 for example exponents and
mantissa’s.

If the mantissa is positive, then the sign byte is zero -- $00. A negative mantissa causes this byte to be
-1-$FF.

93

EXAMPLE FLOATING POINT NUMBERS

1E38 FF 96 76 99 52 00
4E10 A4 95 02 F9 00 00
2E10 A3 a5 02 F9 00 00
1E10 A2 95 02 F9 00 00
1 81 80 00 00 00 00

5 80 80 00 00 00 00

.25 7F 80 00 00 00 00
1E-4 73 D1 B7 59 59 00
1E-37 06 88 IC 14 14 00
1E-38 02 D9 Cc7 EE EE 00
1E-39 00 AO 00 00 00 00

0 00 00 00 00 00

-1 81 80 00 00 00 FF
-10 84 AOQ 00 00 00 FF
®©

w

v

€

©

= @® © © ® =

[? 0 ? % -

c = — = = (@)

4 c c c c c

S © © © © o

o S S £ £ 7]

Figure 8.1.Example floating point numbers.

Actual floating point BASIC variables are stored in 5 bytes, rather than 6 bytes as is the floating
accumulator. Upon examination, one will note that the most significant byte of the mantissa is always
set. If we always assure the number will be in this format, we can use that bit to indicate the sign of the
mantissa -- thus freeing the byte used for sign. The sixth byte is used in the floating accumulator to
simplify operations when shifting the mantissa.

The contents of the floating accumulator may be converted to a double byte integer by cailing a
subroutine FLPINT which is located at $DOA7. The most significant byte of the integer is returned in $B3
and the least significant byte in $B4.

e.g

10 A =USR(2)
contents of FAC after USR call
82 80 00 00 00 00

JSR FLPINT
contents of FAC after conversion
82 00 00 00 02 00 00

integer value

It is not necessary to return a value in the FAC after a USR call. The value of USR can be ieft as just the
current contents of FAC. An integer can be converted back to floating by loading the most significant
byte into index register Y then calling INTFLP at $D278.

94

eg LDAMSB
LDY LSB
JSR INTFLP

USEABLE I/C ROUTINES

Read a line, pass a character
$FFCF return char in 0
no other regs changed

Print a character on screen
$FFD2 Char in A
no regs changed

Test for stop key
$FFE1 returns =, <>

only A changed

Get a character from keyboard
$FFE4
char or if none then null (00)

SUMMARY
There are two ways to communicate from BASIC to machine language program. The simplest of these is

SYS in which the control of the computer is turned over to the machine language program located at the
address specified in thesys command. For implementing your own functions in BASIC, there is a function
called USR which when memory locations of 1 and 2 are properly initialized to point in a machine
language program, evaluate a parameter specified in the user function and pass the results back to the
program using the floating accumulator. A series of useful subroutines, available in BASIC, can allow
either the USR or SYS function to perform operations on the floating accumulator without the user
running any program other than the calling routines.

In all cases, the use of the machine language program is only for the more sophisticated BASIC user.
The protection of the ROM fail safe coding is lost. Machine language programs should only be used when
BASIC is neither fast enough nor the function which is desired is implemented.

MACHINE LANGUAGE MONITOR
TIM is the Terminal Interface Monitor program for MOS Technology’s 65XX microprocessors. It has been

expanded and adapted to function on the Commodore PET. PET uses a cassette tape version of this
monitor. Execution is transfered from the PET BASIC interpreter to TIM by the SYS command.

To LOAD your MONITOR, take the cassette with MONITOR and put it in the tape unit with the MONITOR
side up. Then type: LOAD “MONITOR” and, when ready, RUN.

Commands typed on the PET keyboard can direct TIM to start executing a program, display or modify
registers and memory locations, and load or save binary data. On modifying memory, TIM performs
automatic read after write verification to insure that addressed memory exists, is R/W type, and is
responding correctly.

TIM also provides several subroutines which may be called by user programs. These include reading and
writing characters on the video display, typing a byte in hexadecimal and typing a CRLF sequence.

95

TIM COMMANDS

display memory
display register
begin execution
exit to BASIC
load

save

wrxenL

EXAMPLES
M DISPLAY MEMORY
.M C000,C010
.. C000 1D C7 48 C6 35 CC EF C7
.. C008 C5 CADF CA70CF 23 CB
. C0109C C89C C7 74 C7 1F C8

In a Display Memory command, the start and ending addresses must be completely specified as 4 digit
hex numbers. To modify a memory location, move the cursor up in the display, type the correction and
press RETURN to enter the change. When you move the cursor to a line to do a screen edit, and press
RETURN, the colon telis the monitor that you are re-entering data.

R DISPLAY REGISTERS

.RPC SR AC XR YR SP

..C6 ED 00 20 00 F5

Registers are saved and restored upon each entry or exit from TIM. They may be modified or preloaded as
in the display memory example above. The semicolon telis the monitor you are modifying registers.

G BEGIN EXECUTION

.G C38B

The GO command may have an optional address for the target. If none is specified, the PC from the R
command is taken as the target.

X EXIT TO BASIC

X

READY ;
Causes a warm start of BASIC. In a warm start memory is not altered in any way and BASIC resumes

operation the way it was before a monitor was made.

L LOAD

L 01 MONITOR

PRESS PLAY ON TAPE #1
OK

FOUND MONITOR
LOADING

No defaults are allowed on a LOAD command. The device number and the file name must be completely
specified. Operating system prompts for operator intervention are the same as for BASIC. Memory
addresses are loaded as specified in the file header which is set up by the SAVE command. Machine
language subroutines may be loaded from BASIC but care must be taken not to use BASIC variables as
the variable pointer is set to the last byte loaded +1.

S SAVE
.5 01,MONITOR,0400 ,076D

.PRESS PLAY ON TAPE#1
OK

96

WRITING MONITOR
Likewise, no defaults on the SAVE command. Any start and ending address may be specified.

To cancel a command either type RETURN or press STOP to cancel a Display Memory, LOAD or SAVE.

INTERRUPT AND BREAKPOINT ACTION
BRK is a software interrupt instruction which causes the CPU to interrupt execution, save PC and P

registers on the stack and then branch through a vector at locations $021B and $021C. TIM initializes this
vector to point at itself on entry by CALL. Unless the user modifies this vector, TIM will gain control when
a BRK instruction is executed, print B* indicating entry via breakpoint (instead of C* entry via cali) and
the registers (as in the R command), and wait for user commands. Note that after a BRK which vectors to
TIM, the user’s PC points to the byte following the BRK: however, users who choose to handle BRK
instructions themselves should note that BRK acts as a two-byte instruction, leaving the PC (on return
via RThtwo bytes past the BRK instruction.

IRQ is vectored normally in PET to an ISR which updates the clock and scans the keyboard every 60th of a
second. If the vector is altered and the machine language subroutine does not restore it, a power-on reset

must be performed.

NMI is not provided for in the PET. The processor line corresponding to this interrupt is permanently
pulled UP.

REST vectors to a cold-start of BASIC. Memory is cleared. Reload and re-enter TIM via SYS command.

TIM MONITORS CALLS AND SPECIAL LOCATIONS

JSR WRT $FFD2 type a character

JSR ROT $FFCF input a character

JSR GET $FFE4 Get a character

JSR CRLF $04F2 type a CR

JSR SPACE $063A type a space

JSR WROB $0613 type a byte

JSR RDOB $065E read a byte

JSR HEXIT $0685 Ascii to hex in A
MEMORY USAGE

$0A-$22 zero page

$400-$76A absolute RAM

$23-$5A are zero page locations in the BASIC input buffer which may be used when BASIC is not using
these locations. The second cassette buffer $33A-$3FF is a weil protected location if that device is not
used. Other memory locations may be used with considerable risk, depending upon which piece of PET
software wants to use it also.

MONITOR CHECKOUT PROCEDURE

1) Power up your PET normally into BASIC command mode. Insert the cassette containing a monitor and
use the SHIFT-RUN sequence to initiate a program ioad. You should see a display something like:

C* PC SRAC XR YR SP
5 29 00 88 89 FE

Exact values may vary, although the first and last values should be as shown.

2) The display of registers is the standard entry display message. It consists of C* to identify entry by
call, followed by the CPU register contents: program counter, processor status, accumulator, X index,
Y index, and stack pointer. Note that all TIM inputs and outputs are in base 16 which is referred to as

97

hexadecimal, or just hex. In hexadecimal, the digits are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. After printing the
CPU registers, TIM is ready to receive commands from you. TIM indicates this “ready” status by typing

T3 2)

the prompting character *.” on a new line.

3) The user’s CPU register may also be displayed with the R command. Type an R and press RETURN.
The monitor should respond as above, but without the asterisk.

4) Displayed values may be monitored by screen edit and re-entry of the line via return. Remember to type
spaces to delimit fields and type 4 digit hex numbers for addresses and 2 digits for byte contents.

5) Memory may be dispiayed and modified using the M command. Type:
.M 0100 0107

You will see a display something like:
0 1 3 4 5 6 7
0100 20 00 30 30 30 30 30
Now use the screen edit to modify in place on the screen, type RETURN and display again.

6) Use M and ; to enter the following test program called CHSET because it prints the ASCII 64 character
set on the terminal. The M command is used to display memory locations on the PET screen and it is then
possible to use the screen edit on each line and type RETURN to alter memory.

*=$33A

CRLF = $4F2
WRT =$FFD2

33A 20 F2 04 ; CHSET JSR CRLF

33D A2 20 LDX #320

33F 8A LOOP TXA

340 20 D2 FF JSR WRT

343 E8 INX

344 EO 60 CPX #$60

346 DO F7 BNE LOOP
348 00 BRK

349 4C 3A 03 JMP CHSET

.M 033A,034B

.. 033A 20 F2 04 A2 20 8A 20 D2
.. 0342 FF E8 EO 60 DO F700 4C
.. 034A 3A 03
7) CHSET was assembled to reside in the 2nd cassette buffer. Type:
. G 033A

to execute the program.

The listing should look like this:

' #8%()*,-./10123456789:; =?@ABCDEFG
HIJKLMNOPQRSTUVWXYZIJ/]
B*PC SR AC XR YR SP
., 03493B 5F 608D FE

Note the address contained in the PC. It is possibie to type G execute the program again without
specifying an address.

8) Next we will link CHSET with BASIC. First replace the BRK instruction in location $348 with an RTS
(return subroutine) (change $348 from 00 to 60).

9) Change the USR function vector in locations 1 and 2 to point at the subroutine $33A.

98

.. 0000 4C 3A 03

10) Exit from the monitor and re-enter BASIC.

X
READY

11) Prove that the linkage is established by using both SYS and USR.
A =USR(0)
SYS (3*256 + 3*16 + 10) (Enter these as direct commands.)

99

PET MONITOR 13.1..... FAGE @68l

LIHE

6ea2
8083

888s
#Bée
gear
Boue
gead
gein
8611
BBz
BB13
8614
8615
agle
Betv
agis
Be19
geze
Bo21
Bazz2
eaz3
Boz4
aazsh
goacze
pazy
agcs
gges
pe3e
8831
8g3z
8033
86834
88215
8826
0ez?
peza
8e29
-3 L8]
Bod1
8642
8843
8844
8845
BG4 6
Bad?
BB47
86047
aed7
8e47
8847
B@4g
gadg
Bo48
8843

$ LOC

gsaa
0890

gaasg
a6Ba
8880
8Bao
88069
gaan
easg
gpae
8868
gaaa
gBag
8a6a
gaae
gaae
8pao
gpao
gaed
pgoe
aaan
gaéb
8861
aaeE
PuBF
gait
8n1l
881
eniv
8u19
BB1A
d61in
8s1ic
861D
90 1E
BaiF
8a2a
eB21
gaz?2
8823
8@23
a@23
@33
8400
g404a
8481
6482
eda3
6484
8485
g4@s5
846¢C
gded
848E

Ba
gb
24
an
206
9k
ag
#o
Ba
a8

CORE

LINE

iCOPYRIGHT 1978 BY
;COMMODORE INTERNATIONAL LIMITEDR

YARTAB=47C

TRTFT=$CA

NCMES=8

UPl.1=%591

RIT=$FFCF

WRTI=$FFD2

CRINVY=$08218

BARN=3C38E

Fa=$F |

FRLEH=SEE

FNAIR=$F9

STuL=3F7

STRH=$F 8

EAL=3%ES

EAH=$EE

;CERQ PAGE MOHITOR RESERVYE ARER
»=$64

WRAP *zkd] ,ADERESS WRAP-ARDURND FLAG

DIFF * =4+

BRKF hzh] iBRERK FLAG

PRE9L x=a3}

ACME w=k+2

THPa@ EEE R

THpZz *= w42

THP4 k= k+ P

THPs =K+ 2

PLL EERE X 3]

PCH domon]

FLEGS k= w]

ACC LER RS

XR EEERS

YR L EE R

Sp *=ndd

SAVY *=at]

THPC LEEE D!

TUPL 2 LEE R B

RCHY=THPLT

LCHT=THPC?2

ISTKR ®zk+1E JFILEID BUFFER
*=$440

iENYER COMPILED BRSIC TEXT
.BY¥T @6,13,4, 1%, 8,138

.BYT

‘(te3?>’'.8.8.8

100

PET MONITOR 13.t... .. PAGE B@8aZ

LIKRE ¥ LOC CODE LINE

#0849 @48F ;

#6856 @4ar iCARLL EMTRY POINT

8651 @48F ; STACK CONTRINS Y, X.6.8, PC

8852 B46F ;RREAK EMTRY POINT

8853 @4@F ; STALCK CONTRIMS Y, %, R.8, PC

8854 B48F ;

8855 @48F A5 27 CALLE LDA #<{BRKE ;INIT BRK VEC

#856 @411 8D iB @2 5TA CBINY

BBS7 8414 A5 B4 LDA #>BRKE

BBSR 8416 BD IC B2 5T¢ CBINV+!

6859 8413 Q49 &7 LA #SEOH

8068 B41B B85 ?D STR VARTAB+!

BB6I B4ID AY 68 LDR #<EQH

BBE2 @41F 85 7C 5TA VARTAB

BBE3 @421 A9 43 LDp #'C ;SEYT A= T INDICATE
RBE4 8423 85 2t STA THPC

8665 8425 DB 12 BHE B3 ;CALL ENTRY., THEN JHP TO B3
8866 8427 A9 42 BRKE LDa $'8 ;SET A4=8 FOR BRERK
BBs? @423 B85 21 5TA THFC

8868 842B I8 CLD

BB69 B42C 4R LSR A ;SET CY FOR PC CORRECTION
8870 842D 68 PLA

8871 @842FE 85 1E §TA ¥R i SAYE ¥

BB72 8438 68 PLR

8872 8431 85 1D STA %R i RND 8

@874 084323 68 PLA

B85 9434 85 i€ 5T ace ;AND ACCUMULATOR

8876 Bd436 68 PLA

8877 @437 85 iB STA FLGS ;AND FLAGS

6878 8433 68 B3 PLA

BB73 6434 69 FF ADT BSFF iCY SET 10 PC-1 FOR BREAK
BB8® @43C 85 19 §TA PCL

BB&I B43F 68 PLA

80%2 @43F 69 FF ADC WSFF

BBE3 8441 85 1A STH PCH

6B%4 8443 BA TSR

BBES 8444 86 IF §T% &P ;SAYE ORIGIMAL SP

BBREe Bd445 58 cL1 ;CLEAR IHTR

BOR? 6447 28 F2 94 BS JSR CRLF

8888 B44R A6 21 LDR THFPC iGET ¥ ERBUAL TO B QR C
8629 844C A9 24 LDA #°x

6898 B44E 28 22 @s JSR WRTHO

8891 8451 AY S2 LBA ¥’F ;SEYT FOR R DISPLAY T
B892 8453 ; PERMIT IMMERIARTE

8892 8453 ; ALTER FOLLOWING

B8Y4 08453 ; " BRERKFOINTY

B8Y5 8453 85 4D $TA BRKF ;SET BREAK FLAG

BB%¢ 8455 DB 2B BNE S5

8897 8457 A9 @9 START LDA #0 SNERT COMMAND FROM USER
8898 8459 85 €AQ 5TA TXTPT

8899 8458 85 8D STA BRKF ;CLEAR BREAK FLAG

8186 845D &5 @4 STA WRAP ;CLEAR ADR WRAP-AROUND FLAG
Big: B45F 28 F2 B4 JSR CRLF

BiRZ2 8462 49 2E LDa ¥’ ;TYPE A PROMPTING ‘. ¢
8162 @464 28 D2 FF JSR MRTY

101

PET MONITOR 13.1......PAGE 8083

LINE

8164
8185
e6i66
8167
gi1es
8189
8110
811t
B1i2
8113
8114
8113
6116
8117
8118
6119
8128
giz1i
8122
8123
B124
8125
8126
8127
eiz2s
8129
8138
8131
8132
8133
8134
8135
8136
8137
B138
8139
gi40
8141
8142
8143
8144
8145
8146
8147
8148
8149
8158
8151
8152
8153
8154
8135
8156
8157
8158

¥ LOC

8467
84489
8463
8469
g4e6B
846D
B46F
8471
8474
8477
84?R
B47A
847¢C
847E
8489
8482
8484
8487
8489
8488
848D
848F
8492
0493
8495
8497
8498
8499
8498
849D
g4ag
84a3
84a4
8445
848
84nnA
84AC
84 AE
B84AF
8481
8482
8484
84B¢o
8488
g4BA
8488
8488
8488
8488
e488
8488
848D
B4RBF
84C2
84C4

ho

£E8
Fe
Ee
bo
28
28
4

€9
Fe
€3
Fa
A2
8b
be
A4S
85
86
BD
48
BD
48
68
cta
ig
a9
28
4C
38
RS

BS
as
ES
a8
85
68
AS
85
AS
85
68

8%
LY
28
B1
28

COBE

2e

82
84
83
#é
34
37
98

2E
F9
z2e
FS
a?
a2
8F
28
8E
r4’)
an

12

E9
3F
n2
57

13
it
8B
14
12

B

11
19
12
IR

2l
ae
3A
11
13

neé
86
-1

85

as

FF
84

aé

LINE

LBX

CPA
BEGQ
CP A
BNE
574 JSR
JSK
571 JSR

cnp
BEQ
cav
BEQ
58 LDX
St cup
BHE
LDA
§TaA
STX
Lba
PHa
LDR
PHA
RYS
$2 DEZ
BPL
ERROPR LDA
JER
Jnup
DCHP SEC
Lba
SBC
STa
LDA
sec
TaY
ORA
RYS
PUTP Lba
S5TA
LBA
57a
RTS

i

SAYX

2
s78
3
ST1
SPACE
SPaC2
kBoucC

I
8§71
$$:80
8§71
#NCMDBSE-1
CMDBS. X
82
SAYX
PREVC
SAvX
ADRH, X

ADRL., X

g1
$8$3F
WRT
START

THP2
THPB
RIFF
THP2+1
THPB+1

BIFF

THra
PCL
THPB+{
PCH

;HISPLAY MEM SUBR.
;O0F MEMORY BYTES DISPLRAYED
;TMPB=ADR OF HMEM DISPLAYED

p1] 5Ta

LBY
ont JSR
LDA
JSR

THPC

8

SPACE
(THPO)Y. ¥
WROB

102

; 1F CURRENT €MD 15 R GR ',
SET CURSOR T0
ALTER POSITION

; POSITION UNDER PC DATA
;READ COMMAND. CHARACTER
1§ RETURHER IN &

; IGNORE PROMPYING 7. °

; IGHORE SPACES

; LOOKUP COMMAND

;SAYE PREVIOQUS COMHAHD

;SAYE CURRENT COMMANR INDEX

;LO0OP FOR ALL COMMANDS
;OPERATOR ERRUR RESTART

; JMP START (WRT RETURHS CY
;THP2-THMF® DOUBLE SUBTRACT

;RETURN HIGH ORDER PART IH
;OR LD FOR EQU TEST

;MOYE TMPB TO PCH.PCL

SET AR=NUMBER

;MR N BYTES
S{TMPE)=QRDR

PET MONIYOR 13.

L IHE

8159
8icg
Bi6!l
gis2
8152
8164
Bi6sS
B166
8167
Bie8
8169
g17ve
Bi7t
8172
6173
B174
B175
Bi76
g1?7?
g1ive
8179
Bige
B1at
a182
8183
B184
B183S
g1asg
8137
gigg
8129
B1u@
B19:
B132
8153
8174
8135
B8i%¢6

LOC

84cC7?
84CH
84CcC
B4CE
84CF
84CF
84CF
B4CF
94CF
g4n2
8404
84Ds
é4p8
84 DR
84d(C
840D
840E
B4E]
B4ES
@4ES
BaET?
4€£9
B4EB
84ED
B4EF
84F 1
BdF2
B64F4
@4F7?7
04F7
84F 7
B4F7
84F9
84FB
B84FD
B4FF
8561
8561

28
cé
o
68

28
98
Az
81
£1
Fe
68
68
4C
28
té
68
As
8BS
As
8BS
RY
68
As
4C

Eé
be
Eé
e
Ee6

68

i..... . PAGE 6884

CODE

F? 84
2t
Fi

SE 8¢
@D
Ba
11
it
B3

9B 84
F7 04
21

iB
it
808
12
85

an
b2 FF

i1
-2
12
B2
aa

LINE

JSR
DEC
BHE
RTS

INCTHP
THPC
pMi

;READ AND STORE BYTE.
iH0 STORE IF SPACE OR RCHT = 8.

BYTE JSR
BEC
LBX
5TA
cnp
BEQ
PLA
PLA
Jue
BY3 JSR
DEC
RTS
SETR LOR
57A
LbBa
STA
LbA
RYS
CRLF LDa
JRp

s INCREMENTY

INCTHP INC
BRE
INC
BHE
INC

SETHR RTS

RDGB ; CHAR IN A, CY¥=8 IF 5P
BY3 i SPACE

$0 ;STURE BYTE

(THPY, X

(THPO, XD ;TEST FOR VALID WRITE

B¥3
;ERRGR: CLEARR JSR ADR

ERROPR
INCTHP ;GO INC THPB QDR
RCHY

$FLGS ; SET TQ ACCESS REGS
THP B

L2

THPB+1

$5

LU
WRTY

(THPB, THPB+1)> BY |

THPB ;LOB BYTE

SETWR

THPB+1 iHIGH BYTE

SETHR

HR&AP ;POINTER HAS WRAPPED

AROUND. SET FLAG

103

(RANK

IH

5TA

PET MONITOR 13.1..... . FPAGE 8885

LINE & LOC COBE LINE

8198 8582 34 CHDS .BYTE .’
8139 0563 3B .BYTE .7
8286 8584 52 .BYTE 'R’
628t 95835 4D .BYTE ’'MH’
8282 8386 47 .BYTE ‘G’
8283 @587 o8 .BYTE ‘X'
8284 08588 4C .BY¥TE 'L’
8285 85893 353 .BYTE ‘&'
8286 858R 83 ADRH .BYT >221i
8287 8568 65 CBYT 222
86288 @58C @5 .BYT »223
8289 858D 85 .BYT >224
8218 B8SBE 85 .BYT »225
821t 858F B85 .BYT 226
8212 8318 86 .BYT 227
8213 651t 8¢ .BYT >229
8214 83512 Ci ADRL .BYT (221
#2115 8513 Bi .BYT (222
8216 8314 2C .BYT <223
8217 8515 SE .BYT (224
8218 85i6 D7 .BYT <225
8219 05ti7 FD LBYT (220
8226 8518 9E .BYT 227
B22¢f @513 9¢E .BYT <228

104

PEY MONIYOKR 13.1..... . PAGE 8686

LINE & LOC CODE LINE

6223 831iR 28 S0 REGK .BYTE ’ PC SR AL XR YR 5P’

8224 852D i

86225 8523 A5 8D DSPLYR LDA BRKF +IF NOT BREAK ERTRY.
8226 852F DG @6 BNE Bt i CRLF, 3PaCEZ2

8227 ©853%1 28 F2 B4 JSR CRLF

8228 8534 26 37 8¢ JSR SPacC2

8229 8537 28 37 8o 1 B} JSR SPAC2

8238 853A A2 B0 LBY #8

8231 @853C 8D 1A 65 b2 LA REGK. X

B232 @53F 28 D2 FF JSR WRT

8233 8542 8 INX

8234 98543 E8 13 CPX #19

#8235 8545 B8 FS BHE D2

8236 08347 26 F2 84 JSR CRLF

8237 85348 AZ ZE LBE #’.

B238 B54C 45 3B Lpa ¥

8233 B854t 26 22 86 JSR WRTHO

8248 8551 286 37 8o JSR SPaC2

8241 83554 2@ @8 8¢ JSR WRPC JWRITE PC

8242 8557 28 E7 84 JER SETR

8243 8358 206 BB @4 JSR DH ;USE DM SUEBR.

8244 855D Fé 4D BEQ BEGSI

B245 B8535F 28 96 0o DSPLYM JSR RDBGC

8246 8562 28 4F B0 JSR RDOA JREAD STARY RIR
8247 @563 58 48 BCC ERRSH ;ERR IF HO 5w

8248 8567 28 3F @6 JSR T2T72 ;3R TQ THPZ

8243 8568 286 98 8% JSR RBOC s BKIP DELIMITER
8258 856D 28 4F Bs JSR RDOA iREGE EHD ADR

8251 @S?7@ 98 3D BCC ERRSH JERR 1IF HO E#

8252 8572 28 3F 8¢ JSR T272 +5A" FO TMPB, Ef TO THPZ
8233 8575 A8 ©o LDY #a

8254 8577 B3 4A @7 COLH LDA HDK. Y

8255 @857 3@ 86 BMI COLHZ2

8256 857C 28 D2 FF JSR WRT

8257 @857?F C8 INY

8258 8588 DB F5 BNE COLH

8259 85382 29 7F COLH2 AHD Bs$7F

8260 8584 28 L2 FF JSR WRT

8261 8537 28 2R F3 ISP} JSR TS§TP s TEET FGR STOP KEY
8262 8588 Fa@ 28 BEQ BE®SI

8263 838C A6 @A LDA WRAP s IF ABRS WRAP-AROUND, STOF
8264 O35B8E De iC BNE BEES!

8265 08598 28 A3 B4 JSR DBCHP

8266 85333 98 17 BCC REBSt ;8TOP IF EA LESS THAH SA
8267 8535 20 F2 84 JSR CRLF JBEGIN NEW OUTPUT LIHE
8268 6598 A2 Z2E LDX %7

8263 B8359%A A3 38 Lba #.

8278 @853C 2@ 22 8¢ JSR WRTUWG

8271 @59F 28 37 8¢ JSR SPAC2

8272 085A2 2@ B4 86 JER WROA

8273 85A5 A9 B8 LOa %8

8274 @5A7 26 BB @4 JSR DH s DISPLAY &, INCR THP@
8275 B85AA FB 1B BEQ BSP1i

8276 B8SAC 4C 57 84 BEQS! J#WP START

e27?? B3AF 4C 3B B4 ERRS1 JMP ERROPR

105

PET MONITOR 13.1......PAGE 8667

LINE

8278
8279
8288
8281
Bz2az2
B283
B234
B285
B286
8287
8288
8289
8298
#8291
az2s2
8293
8294
82935
8296
8257
8258
8299
83ne8
8381
8382
8383
8364
8365
8386
8387
B3a8
8349
8310
831t
8312
8313
B34
8313
8316
6317
83i8
8319
g3ze
832l
8322
8323
8324
8325
B326
8327
p3e28
8329
8338
8331
8332

Log

8582

as82 -

8582
8382
9583
8588
83BA
858D
asca
852
85C2
B3C2
esc2
853C5
8sCa
85Ca
8sce
85CE
85Dt
95D4
8304
U RRHE
83DB
85D
85 1IF
@SEd
85E3
8SES
85SE3
8SER
85ED
8SEE
8SF@a
85F i
85F3
85F 4
B5F%
@SF7?
85F3
85FR
85FD
85FE
8ecas
gcat
8524
8ca4
B84
86824
868%
0caa
8eadn
8gac
668D
B68BF
Be12

28
28
38
28
28
be

28
28
38
a3
as
28
28
pae
Fo
2a
€39
Fé
t9
na
zae
90
24
a6
9A
]
48
as
48
a5
48
As
a6
ad
48
46
IR
4C

a2
ne
a2
85
48
B3
28
68

CODE

SE
4F
83
B2
E7
1)

SE
4F
£S5
@8
21
99
CF
F8
D4
CF
@D
8c
28
e
4F
83
B2
tF

1A
i8
iB
iC
ib
1E
1F

8B

81
82
839
18

it
13

85
B4

FF

84

8%

LINE

i

iALTER REGISTERS

ALTK

AL2

i

;ALTER

ALTH

a4
RS

R9
GO

[z}
[

EXIT
;WRITE
WROA

WRPC
BROA L

JER
J&R
BCC
JER
JSR
BNE

MEMORY -

JER
JER
BLCC
LDA
STA
JER
JSR
BHE
BEQ
JSR
Chuep
BEQ
cap
BHE
JSR
BCC
JSR
LBK
TKS
LDA
PHA
LBa
PHA
LBA
PHR
LA
LDX
Loy
RTI
LBX
TKS
JHP

ADR

LBX
BHE
LDX
Lbn
PHA
LBa
JER
PLaA

RDOB
RICA
ALe
pPutTP
SETR
A4

RDGB
ROOA
ERRS I
L]
RCNT
RopGC
BYTE
AS
BEGS!
RDT
#3580
G1i
$s2¢
ERRS1
RDOA
61
PUTP
Sp

PCH
PCL
FLGS
ACe
RER
R
SPp

WRRN

iSKIP 2 SPACES
;CY=8 IF &P

; SPACE

;ALTER PC

;SET TO ALTER RS

READ ADR AND DATK

i 8KIP 2 S5PACES
JREAD HMEM ALTER ADK
iCY=8, "IF SPACE, ERKR
;SET THT = 8

; IF CR, EXIT

; IF HGT SPACE, ERR

;ORIG OR HNEW SP VALUE TO

JEXIT TO BASIC WARM STHRT

FROM THP@ STORES

#1

BROAL

*9
THFB-1,%

THPB. B
WROB

106

PET MONITOR 13.1... .. PAGE B@e8

LINE #% LOC CONE LINE

8333 8613 i

8334 0613 i@RITE BYTE --- A = BYTE

B335 08613 sUNPACK BYTE DATA INTOD THO RSCII
8336 8613 iCHARACTERS. 6=BYTE, K,A=CHARS
8337 8613 ;

8338 8613 48 WROB PHA

8333 6614 44 LSR &

8348 B61i5 44 LSR A

8341 8618 44 LSR &

8342 @617 44 LSR A

8343 8618 2@ 2B 86 JSR ASCII ;CONYERT TO ASCII
8344 @B61iB AA Ta¥

8343 B6iC &8 PLA

8346 B61D 23 @F AKD #$8F

8347 @61F 28 28 8¢ JSR ASCI1I

8348 @622 ;

B349 @g22 iWRITE 2 CHARS--X.A=CHARS

8338 8622 i

8331 8622 48 WRTHO PHA

B352 8623 8A T¥A

8353 @624 28 D2 FF JSR MRT

8354 08627 68 PLA

8355 8628 4C D2 FF JBP WRT

8356 @862B 18 ASCII CtLcC

8337 0862C 69 de RBC #¢

8358 B862E 69 F8 RBC #s3Fe

8359 @c39 98 82 BCC asSCly

B368 6632 63 86 RDC #sae¢

8361 08634 69 3A RSC1 ADC #33a

8362 8636 68 RTS

B3632 @637 28 3R 8% SPAC2 JSR SPACE

B364 B63R A9 Z8 SPACE LBR #s$28

8365 863C 4C B2 FF JHP WRT ;TYPE SP
8366 B&3F a2 82 T2712 LDX #2

8367 @641 8BS 18 T2721 LDA THPO-1,%

8368 8643 48 PHA

8369 8644 B3 12 LBA THP2-1.,%

8378 8645 35 14 STA THPB-1.%

8371 8648 68 PLA

B372 8643 95 (2 STA TMP2-1,8

8373 664B €A DEX

B374 @64C D6 F3 BNE T2T721

8375 @64E €8 RTS

8376 @64F i

83?7 B64F iREAD HEK ADR, RETURN HI IN THMPO,
8378 8R4F ;LD IN THP@+1,AND CY=1

8373 @&d4F iIF SP Cv=9o

8336 064F i

838! @64F 28 S5E @6 RBOA JSR RDOB ;READ 2-CHAR BYTE
B382 8652 98 82 BCC RDOA2 i SPACE
B383 B8654 85 {2 STA THPB+}

8384 @656 28 SE @6 RDOAZ JSR RDOB

8385 8633 98 @2 BCC RDEXIY ;8P
8326 @865B 85 11t STA THPO

8387 @8&S5D 68 RDEXIT RTS

107

PET MONITOR 13.1......PAGE BG83

LINE

8388
8389
8354
2391
8392
8333
8334
8335
839%¢6
8337
8398
8399
8400
8481
8482
8482
8404
8485
B48¢6
p4avs
a498
8489
B4tie
8411
8412
8413
8414
B415
8416
8417
B4i8
8419
B4ze
B421t
B422
84223
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8449
8441
8442

Ltac

8&S5E
865E
86S5E
86SE
B863E
8e6@d
8662
8665
8657
8669
866¢C
B66E
8c7a@
8671
8672
86735
8676
8677
8678
8673
Be7B
867K
8681
Ac83
8684
8635
8687
8689
8c8A
8588
868D
g6ar
8694
8693
8695
8637
8698
8699
063¢C
869F
B86A2
8644
B6A6
86A3
B6AR
86RC
86AF
86B!
8683
86B6
8cB8
p£EBB
86BD
86BF
86C1

A9
85
28
3
Do
28
9
pa
18
60
20
BA
8A
8A
an
85
2a
2a
835
38
68
s
ag
29
28
S8
69
60
2a
€9
D
£8
68
4C
4C
28
49
85
85
A9
85
28
23
BS
28
Az
28
C3
Fa
9
Fa

coRE

8o
8F
9@
249
89
98
28
8E

85

BF
99
BS
BF

38

BF

a2
#8

CF
ap
F8

57
38
98
80
EE
Fa
23
F9
SE
8F
Fi
50
8e
CF
2C
&5
ad
8B

#o
8e

FF

B4
84
B6

LINE

READ HEX
AND CY=1

RIOB

RDOB!
RpOB2

RBOB3

HEXIT

HEX89
RBOC

ERRL
Lb

RD2

LBA
STA
JER
cup
BNE
JSR
cup
BNE
cLc
RTYS
JSR
ASL
AsSL
ASL
ASL
8TA
JSR
JSR
oRA
SEC
RYS
cup
PHP
AND
pLP
BCC
ABC
RTS
JSR
cup
BHE
pLA
PLA
Jnup
JHP
JSR
LBA
5Ta
§TA
LbA
574
JSR
AKRD
5TA
JSR
LDX
JSR
cap
BEQ
cue
BEQ

BYTE AND RETURN IN A
IF 5P CY=8

30 ; SPACE
ACHD ;READ NEXT CHAR
RDET
'.‘
RDOB2
RDOC ;READ HNEKT CHAR
‘.’
RDOB3
;CY=8

ERIT ; TO HEX

>DPDDDPXT

ACHKD
RBOC ;2ND CHAR ASSUMEDR HEY
HEKIT
ACHKHD
iCY=1

$430
;SAVE FLAGS
$80F

HEX8S ;8-9
8 ;ALPHA ADD 8+CY¥=9

RDT ;READ CHAR
#s8D ;18 IT A CR
HEX @89 ;NO, RTS

;YES, CLEAH STACK.EXIT
START
ERROPR
RBGC
¥8
FHNLEN
FNABR+1
$CISTR
FNADR
RDOB READ FA
$3F
Fa ;FIRST ADR
RDOC ;i SKIP CONMHA
9
RDT
t
L4
#s0D
L3

108

PET HMONITOR 13.1.... . FAGE @018

LISE % LOC CORE LINE

8442 @86C3 E86 18 CPY %16

8444 BECS5 F@ Fi BEQ RD2Z

8445 @86C7 985 23 STA ISTR. %

844 BAC3 ES EE IHC FMLEN

8447 BLCB E8 8%

8448 B6CC BB ER BNE RIbZ

B443 B6CE AS 29 L3 LDA Savy ;15 FTHIS A LOAD
#4598 B6D8 C9 @5 CHP »¢

8451 86D2 Dae Ca BHE EREL iNG. ERROR
24532 @604 AZ @O Lp2 LBX #9

#8453 @6Ds BE 8B @2 STX V¥ERCK

8454 BED3 A5 Fi LBr FR

8455 @&6DB Do a3z BHE *+5

84506 @6BD 4T 98 04 LDta JBP ERROPR

8457 86E8 [H9 @3 cnp #3

B458 B6E2 BB FS BCS LDisg

B459 BE6ES 28 67 F§ JSR 222

8468 BEET7 206 3B F§ JSR CSTEL

8461 B6ER 2@ FF F3 JSR LD3ae

B462 B6ED A5 EE LBa FNLEN

B463 OEEF F@ @3 BEQ LDi58@

8464 BEFI 28 95 F4 JSR FAF

8465 @86F4 D@ asg BHE tLhive

B4t6 BEFS 40 9B D4 Lbtze JMP ERROPR

B467 WB6F3 28 RE F5 LBi3@ JSR FrH

B468 B6FC F8@ F8 BEQ LDi12e

B469 BEFE 28 4D F¢ LBi7® JSR LDADZ

8476 B7A1 28 22 F4 JSR LD4Ge

B471 @784 28 Ba Fg JER TRE

86472 8787 26 i3 F3 JER TUWGIT

8473 8704 Al acC @2 LBAa SATUS

B474 878D 295 19 AND #SPERR

8475 @78F L@ ES BHE LDi2e

8476 8711 d4C 57 84 JHFP START

8477 8714 28 4F B9 L4 JSR RI{A sRD, STORE BEGIN’G ADR
8478 8717 a5 it LDA THPa

8479 8713 25 F7? STA STsL

#4238 0718 A5 12 Lbn THPB+]

B4zt 871D 85 F8 5TA STAH

8422 @FIiF 28 CF FF L& JSR RET +RD KHET [HaR
8423 8722 €35 29 CHP #3290

B424 @724 F@ F9 BER L35 i TGNGRE BLANKS
84583 8726 L3 Bl CHP ¥s$D

B48e B728 F@ A4 BEG L2 iCR: GO TEST IF LGAD
B4e? @728 CH 2¢ cHp 4,

#488 872C F@a a3 BER *+5

8422 @72E 4C 9C 8% JHP ERRL

84308 8731 286 4F @e JSR RDOA ;RI, SBTORE ENDING ADES
8431 @734 45 11} LBa THPO

8422 8736 83 ES STa EAL

#4352 8738 A5 12 LA THPB+1

8434 @738 85 Es STRA ERH

8435 B873C A% 28 Lin SAvk ;s TEST IF LOAD QR SAVE
8436 B73E €9 @s Cue #e

8457 8748 F@ 92 BEG LDe ;G0 LGAD

109

PET HMONITOR 123

LIHE % LOC

8438
2439
as568
B5361
8581
B5a@2
asaz2
8583
8584
as5es
BSae
8587y
po88
B5a9
asie
8511
8512
8513
8514
8515
BSise
8517
B518
8519
Bps2a
8521
asz22
8523
8524
8525
852e

|

I A A Ea R R T
A >~

OO OO DD DD

W w o

HTO VDD
EUEEN IS BRI B BRS Bha¥ B Hha Bhat Bia}
3

» Oh O

TN O O T

)

=Y
DO W OO DD W mD DX n D

s

D Y N N e e B e P BN B BV A T M

O OCT PP HDIITITCOIDISTOT

AZ
28
4C
an
c2a
38
BY

ERKORS = o@aes

i......PAGE BBl
COBE LINE
68 LBY %90
Bt Fé JSR 5AVE
57 84 JAP START
HOR .BYT san,’
2e
2a .BYT '8 1
TSTP=$F32n
S¥=LD
222=%F667

CSTEl=$FR3B
LD330=8F3FF
SPERR=16
3ATUS=%20C
THAIT=%F513
TRD=4F884
Lh4aa=$F422
LIADR2=$F64D
FAH=$FSAE
SAVE=%F6B1
VERCK=¢428R
FaF=$F4395
Z21=ALTM-1
222=ALTR-1
223=DSPLYR-1
224=D5PLYH-1
223=60-1
226=EXIT~1
227=LD-1
228=85¥-1
EQH END

110

2

3

;i SAVYE

4

5

€

‘. $B7

SYMBOL TABLE

SYMBOL

fAd
RCHMD
ALTH
B3
BRKF
CBINY
CRLF
pCHp
D8P
EAL
ERRSH
FaH
Gt
HEXIT
L4
Lbie
Loz
NCHMDS
PUTP
RBOA
RDOB2
REGK
SATUS
SETHR
SPERR
STAL
72721
THPs
TSTP
YARTAB
WROA
HRY
221
225
222

END OF ASSEMBLY

YALUE

ascc
Besr
85C2
8439
geel
8218
B4F 2
B4A3
8387
BBES
B5AF
FSAE
85EB
B685
8714
860D
86D4
aees
a482
864F
8672
B31A
azac
8381
ge1e
ger?
Be41
neiv
F32A
BezC
8684
FFD2
a5C1
8557
F667

AS
ADRH
ALTR
BS
BY2
CHDBS
CSTEL
DIFF
DSPLYH
EOM
EXIT
FLES
GO
INCTHP
LS
LDi28
LD3oa
PCH
RCNT
RBGAZ
RDOB3
58
SAVE
SP
578
START
THPO
THPC
TWALT
VERCK
WROAL
WRTRE
222
228

85CE

8584

83B2
B447
84E1
8582
Fa3s
8oeB
855F
8768
BSFE
peis
8518
B4F7
B71IF
B6F6
F3FF
Be1A
ae2t
B656
BE6TE
B482
FeBi
aatr
8471
8457
BBl
aezi
F913
B2@b
B66A
8622
B5B1
85FD

111

A9
ADRL
AsSCt
BEGS1
BYTE
COLH
Bt

bn
BSPLYR
ERRL
Fa
FNADR
HIR
ISTR
LCHNTY
LniSe
LD4po
PCL
RD2
RIOB
RBOC
St
SAYK
SPACZ
§T1
SV
THP2
THPC2
TXTPT
WARM
WREGR
KR
223
227

8506
8512
8634
834l
84CF
@577
8337
24B8R
852D
863C
98F1
9BF9
8744
8823
8822
BEFS
Fa2z
0819
@688
86 5E
8638
8434
aaza
8637
8477
86 9F
gRiz
ag22
eBca
C388
8613
8aiD
852C
86 3E

acc
aL2
ASCII
BRKE
CALLE
COLH2
B2
oMt
ERH
ERRGPR
FaF
FNLEN
HEXEBSI
L3

Lo
Ltoire
LDARZ
PREVC
RDEKIT
RDOEL
RDT
§2
SETR
SPRCE
STARH
Tar2
THP4
TRD
UrPLt
BRHP
WRPC
YR
£24
<z

galic
858D
6628
8427
a48F
6582
8sac
84BF
88€Es
8498
F455
BAEE
B6E&F
RE6CE
08 9F
86FE
F&4D
2B6E
8630
8665
FFCF
2491
R4E?
e 3R
0BF 3
B63F
gats
Fean
8651
CEEE
ge@s
BBIE
g455E
B69E

NOTES

112

Chapter 9. ERRORS AND DIAGNOSTICS

One of the advantages of the highly interactive way in which you are able to use your PET is that errors
are easily correctable, due to the fact that the languages that are used within the machine have specific
rules under which the not so smart computer can operate. These rules are necessary to allow the
language to be able to understand what you are trying to tell it. Whenever BASIC cannot perform a
function, it will tell you about it in the form of an error message. A total list of the error messages and
some examples of what causes them foilows.

The advantage of having this immediate response on the screen is that you can use the screen editor to
immediately fix the problem as it occurs. In most cases, the problem is going to be obvious to you. The
most common error is the syntax error problem, which means that you have typed the line to BASIC that it
doesn’t understand. The correction for this type of problem is to list the line that is being complained
about and compare the typed data to what you thought you were going to type. About 90 percent of the
time, you will discover the mistake by superficial inspection. If not, you may have to make reference to
the appendix which defines the form for ail the BASIC statements and if that does not clarify it for you, go
to the individual write-up to understand what you are doing wrong.

The common problems are you have got a comma in the wrong place, or you used a variable that cannot
be used in this particular kind of format. The basic premise to remember when correcting errors is that
although the language is forgiving of exact requirements for spaces verses no spaces etc., that the rules
are explicit. If you violate the rules, the computer is going to continue to complain about an error until you
give it a problem it understands. Sometimes, the error is not as easy to undestand, although in almost
all cases while executing a problem, if an error is encountered, the line number will be indicated.

Sometimes a problem is the result of a programming mistake that you have made in a previous
computat|on For instance, if you get a divide by zero in line 75 and you know you shouldn’t be dividing by
zero because, in your opinion, the value that is in the divisor should never be zero. The error is probably
not on line 75, but somewhere further up your program where you define the variable. In order to attack
this kind of problem, the use of temporary print statements is the common technique. In other words, if
the variable is zero on line 75 and you don't think it should be, then you should list the portion that defines
the variable. More often than not, an inspection of this area will show the problem to you immediately. If
not, insert lines at appropriate places where the variable is computed to see when the variable acquires a
value that you don’t expect. This technique will usually allow you to figure out the problem in your
programming.

The error messages in PET BASIC have been expanded over those other BASICs to give you a readily
English format for what the message is. However, other than using the techniques which we have just
described, the computer cannot fix a problem for you, it is in this area that programmers are made or
broken. Just remember that nobody is looking over your shoulder and use the machine to help you
understand the problem. If necessary, write little test routines which do only a piece of your program,
until you understand what is causing your problem.

ERROR MESSAGES
On encountering an error in interpretation of a statement, whether in direct or program
execution, BASIC displays a diagnostic message then returns to direct mode.

?MESSAGE ERROR IN LINE NUMBER
READY.

113

Resumption of execution is not permitted with a CONT command. Variables within the statement or
program retain their values so they may be scrutinized to determine a cause of error, if

necessary. GOSUB and FOR entries on the stack at the time of error are cleared so resumption of
execution is not possible by RETURN or NEXT.

POSSIBLE BASIC MESSAGES AND MEANINGS
Bad subscript- An attempt was made to reference a matrix element which is outside the dimensions of
the matrix. This may happen by specifying the wrong number of dimensions or a subscript larger than

specified in the original dimension.
DIM A(2,2)
Al 1,1)=2
?7BAD SUBSCRIPT ERROR
READY.
A(10,10)=2
?BAD SUBSCRIPT ERROR
READY.

Can’t continue-Program execution cannot be resumed via a CONT command in four cases:

1) no program exists.
2) a new line was just typed in.

) the program has not recently been run.
) an error just ocurred.

‘CAN’T CONTINUE ERROR’
READY.

Division by zero-Zero as a divisor would result in numeric overflow-thus it is not allowed. When this
message appears, it is most expedient to list the statement and look for division operators.

?DIVISION BY ZERO ERROR IN 10

LIST 10
10A =B/C
7C

0

Formula too complex-This message concerns only string expressions when BASIC runs out of string
temporary pointers to keep track of substrings in evaluating a string expression.

?7FORMULA TOO COMPLEX ERROR
READY.

Break the string expression into two smaller parts to cure the problem.

lliegal direct--A single 80 column buffer area is used by BASIC to process incoming characters. This same
buffer is used to hold a statement that is being interpreted in direct mode. INPUT will not work because
incoming characters would overwrite the variable list following INPUT to be processed.

DEF cannot be used in direct mode for a different but similar reason. The name of a function is stored in
the BASIC variable area with pointers to the string of caharacters which define the function. Since the
function exists only in the input buffer, it would be wiped out the first time a new command is typed-in.

114

INPUT A
?ILLEGAL DIRECT ERROR
READY.
lllegal quantity--Occurs when a function is accessed with a parameter out of range. This error may be

caused by:
1. A matrix subscript out of range 0< X 32767
X(=1)=Y
?ILLEGAL QUANTITY ERROR
2. LOG (negative or zero argument)
3. SQR (negative argument)

4. A * B where A=0 and B not integer.
?(-5)y s illegal because it would give a complex result.

5. Call of USR before machine language subroutine has been patched in.

6. Use of string functions MID$, LEFTS$, RIGHTS, with length parameters out of
range(1< X < 255).

7. Index on ...GOTO out of range.
8. addresses specified for PEEK, POKE, WAIT and SYS out of range.
(0 < X <65535).

9. Byte parameters of WAIT, POKE, TAB and SPC out of range
(0< X<255).

POKE 32768,1000
?ILLEGAL QUANTITY ERROR
READY.

Next without for--Either a NEXT is improperly nested or the variable in a NEXT statement corresponds to
no previously executed FOR statement.

FOR I1=1TO 10:NEXT:NEXT
?NEXT WITHOUT FOR ERROR
READY.

FOR1=1TO 10:NEXT J
?NEXT WITHOUT FOR ERROR
READY.

OUT OF DATA--A READ statement was executed but all of the data statements in the program have been

read. The program tried to read too much data, or insufficient

OUT OF DATA--A READ statement was executed but all of the data statements in the program have been
nt data, was inciuded in the program. Carriage

OUT OF DATA--A READ statement was executed but all of the data statements in the program have been

read. The program tried to read too much data, or insufficient data, was included in the program. Carriage

returning through a line READY on the PET TV display, sometimes yields this error because the message

is interpreted as READ Y.

READY.

?0UT OF DATA ERROR
READY.

OUT OF MEMORY--May appear while entering or editing a program as the text completely fills memory.
At run time, assignment and creation of variables may also fill all variable memory. Array available

declarations consume large areas of memory even though a program may be rather short. The maximum
number of FOR loops and simultaneous GOSUBs are dependent on each other. This context is stored on
the 6502 hardware stack whose capacity may be exceeded. To determine the type of memory error, print
FRE (0). If there are a large number of bytes variables, it is most likely a FOR-NEXT or GOSut problem.

115

10GOSUB10

RUN

?0UT OF MEMORY ERROR IN 10

READY.

?FRE(0)

7156
OVERFLOW--Numbers resulting from computations or input that are larger than 1.70141184 E + 38 cannot
be represented in BASIC’s number format. Underflow is not a detectable error but less than 2.93873587
E-39 are indistinguishable from zero.

?1E40

?0VERFLOW ERROR

READY.
REDIM’D ARRAY--After a matrix was dimensioned, another dimension statement for the same matrix was
encountered. For example, an array variable is defined by default when it is first used, and later a DIM
statement is encountered.

A(5)=6

DIM A{10,10)

?REDIM’'D ARRAY ERROR

READY.

REDO FROM START--Is not actually a fatal error printed in the standard format but is a diagnostic printed
when data in response to INPUT is alpha when a numeric quantity is required.

10 INPUT A

RUN

?ABC

?REDO FROM START

?
INPUT continues to function until acceptable data has been received. The complement to this diagnostic
on files is BAD DATA ERROR which is fatal.When not enough data has been typed in response to INPUT,
a double ? is printed until enough data is received.

10 INPUT A,B,C
RUN

1

772

7723

READY.
RETURN WITHOUT GOSUB--A RETURN statement was encountered without a previous GOSUB
statement being executed.

CLR
RETURN
?RETURN WITHOUT GOSUB ERROR

STRING TOO LONG--Attempt by use of the concatenation operator to create a string more than 255
characters long.

A$="A’

FOR I=1TO 10:A$ = A$ + AS:NEXT
?STRING TOO LONG ERROR
READY.

SYNTAX--BASIC cannot recognize the statement you have typed. Caused by such things as missing
parenthesis, illegal characters, incorrect punctuation, mispelied keyword.

116

RUIN
?SYNTAX ERROR
READY.

TYPE MISMATCH--The left-handed side of an assignment statement was a numeric variable and the
right-hand side was a string, or vice versa; or a function which expected a string argument was given a
numeric one, or vice versa.

A$=5
?TYPE MISMATCH ERROR
READY.

UNDEF’D STATEMENT--An attempt was made to GOTO, GOSUB, or THEN to a statement which does not

exist.

GOTO A
?UNDEF’'D STATEMENT ERROR
READY.

UNDEF’'D FUNCTION-Reference was made to a user defined function which had never been defined.

X=FNA(@)
?PUNDEF’D FUNCTION ERROR
READY.

Operating System Messages and Meanings
BAD DATA--Numeric data was expected but alpha data was received when inputing from a special
device.

DEVICE NOT PRESENT-- No device on the IEEE was present to handshake an
attention sequence. Status will have a value of 2 which corresponds to a time out. May happen on OPEN,
CLOSE, CMD, INPUT#, GET#, PRINT#

OPEN 5,4,3, ‘FILE’
?DEVICE NOT PRESENT ERROR
READY.

FILE NOT FOUND--The named files specified in OPEN or LOAD was not found on the device specified. In
the case of tape I/O, an end of tape mark was encountered. In disk /O, the disk timed out when
attempting to open the file, thus producing this message:

LOAD ‘FILE’, 15
?FILE NOT FOUND ERROR
READY.

FILE NOT OPEN--The operating system must have device number and command information provided by
the OPEN statement. If an attempt is made to read or write a file without having done this previously, then
this message appears:

CLR

INPUT#10,A

?FILE NOT OPEN ERROR
READY.

FILE OPEN--An attempt to redefine file parameter information by repeating an OPEN command on the
same file twice.

OPEN 1,4,1

OPEN 1,4,1

?FILE OPEN ERROR
READY.

LOAD--Only ccurs when loading a program from cassette tape. This means that there were more than 31
errors in the first tape block or that there were errors in exactly the same corresponding positions of both

117

blocks.

NOT INPUT FILE --Tape files, once opened for writing, cannot be read without first CLOSE rewinding tape
and OPEN for INPUT. This message appears when an attempt is made to read on output file:

10 OPEN 1,11

20 INPUT #1,A

?NOT INPUT FILE ERROR
READY.

NOT OUTPUT FILE-Tape files cannot be read and updated in place. Device 0 is the keyboard and it
cannot be written to:

10 OPEN 1,0

20 PRINT #1

?NOT OUTPUT FILE ERROR
READY.

VERIFY--The contents of memory and a specified file do not compare.

NOTES

118

Appendix A.

Detailed PET Memory Map

PET Memory Allocation By 4K Blocks

START
BLOCK # TYPE ADDRESS FUNCTION
*0 RAM $0000 Working, text, variable storage.
1 RAM $1000 Test variable storage (8K only)
2 $2000 Expansion RAM
3 $3000 Expansion RAM
4 $4000 Expansion RAM
5 $5000 Expansion RAM
6 - $6000 Expansion RAM
7 $7000 Expansion RAM
8 RAM $8000 Screen memory (1K)
9 $9000 Expansion ROM
10 $A000 Expansion ROM
11 $B00O Expansion ROM
12 ROM $C000 BASIC (principally statement interpreter).
13 ROM $D000 BASIC (principally math package).
*14 ROM $E000 Screen editor.
Ie] $E800 All internal PET 1/O.
15 ROM $F000 OS diagnostics
*see expanded description
Block 0 By 256 Byte Pages
START
PAGE TYPE ADDRESS FUNCTION
**0 RAM 0000 BASIC OS working storage
**1 RAM 0100 Stack
**2 RAM 0200 O S working storage
**3 RAM 0300 Cassette buffers.
4-15 RAM 0400 BASIC text area
** see expanded description by page
Block 14 By 2K Segment
START
PAGE TYPE ADDRESS FUNCTION
0 ROM $E000 Screen editor
1 /10 $E800 PET I/O

A-1

PAGE TYPE
0 PIA
1 PIA
2 VIA

/0 Device Base Addresses

START

ADDRESS FUNCTION
$E810 Keyboard
$E820 IEEE-488
$E840 USR PORT cassette

Location not specified are used but have no clear one function definition.

PET PAGE ZERO MEMORY MAP

FROM

000
001

TO

002

Terminal /O maintenanc

003
004
005
006
007
008
009
010
090
091
092

089

Evaluation of variables

093
094
095 -
096
097
098
099
100
101
102
104
112
114
116
Data storage maintena
122
124
126
128
130
132
134
136

138
140
142
144

103
111
113
115
121
nce
123
125
127
129
131
133
135
137

139
141
143
145

DESCRIPTION

$4C constant (6502 JMP instruction).
USR function address lo, hi.

Active /O channel #.

Nulls to print for CRLF (unused).

Column BASIC is printing next.

Terminal width (unused).

Limit for scanning source columns (unused).
Line number storage before buffer.

$2C constant (special comma for INPUT process).
BASIC INPUT buffer (80 bytes).

General counter for BASIC.

$00 used as delimeter.

General counter for BASIC.

Flag to remember dimensioned variables.

Flag for variable type; O#numeric; 1 +string.

Flag for integer tape.

Flag to crunch reserved words (protects ‘& remark).
Flag which allows subscripts in syntax.

Flags INPUT or READ.

Flag sign of TAN.

Flag to suppress OUTPUT (+ normal; — suppressed).
Index to next available descriptor.

Pointer to last string temporary lo; hi.

Table of double byte descriptors which point to vaiables.
Indirect index #1 lo; hi.

Indirect index #2 lo; hi.

Pseudo register for function operands.

Pointer to start of BASIC text area lo; hi byte.
Pointer to start of variables lo; hi byte.
Pointer to array table lo; hi byte.

Pointer to end of variabies lo; hi byte.

Pointer to start of strings lo; hi byte.

Pointer to top string space lo; hi byte.
Highest RAM adr lo; hi byte.

Current line being executed. A zero in 136 means statement
executed in a direct command.

Line # for continue command lo; hi.

Pointer to next STMNT to execute lo; hi.
Data line # for errors lo; hi.

Data statement pointer io; hi.

A-2

Expression evaluation

146 147 Source of INPUT lo; hi.
148 149 Current variable name.
150 151 Pointer to variable in memory lo; hi.
152 153 Pointer to variable referred to in current FOR-NEXT.
154 155 Pointer to current operator in table lo, hi.
156 - Special mask for current operator.
157 158 Pointer to function definition lo; hi.
159 160 Pointer to a string description lo; hi.
161 - Length of a string of above string.
162 - Constant used by garbage collect routine.
163 - $4C constant (6502 JMP inst).
164 165 Vector for function dispatch lo; hi.
166 171 Floating accumulator #3.
172 173 Block transfer pointer #1 lo; hi.
174 175 Block transfer pointer #2 lo; hi.
176 181 Floating accumulator #1. (USR function evaluated here).
182 - Duplicate copy of sign of mantissa of FAC #1.
183 - Counter for # of bits fo shift to normalize FAC # 1.
184 189 Floating accumulator #2.
190 - Overflow byte for floating argument.
191 - Duplicate copy of sign of mantissa.
192 193 Pointer to ASCII rep of FAC in conversion routine 1o; hi.
RAM subroutines
194 199 CHRGOT RAM code. Gets next character from BASIC text.
200 - CHRGOT RAM code regets current characters.
201 202 Pointer to source text lo; hi.
203 223 Next random number in storage.
OS page zero storage
224 225 Pointer to start of line of cursor loc 1o; hi.
226 - Column position of cursor.
227 228 General purpose start address indirect lo; hi.
229 233 General purpose and address direct |o; hi.
234 - Flag for quote mode on/off.
238 - Current file name length.
239 - Current logical file number.
240 - Current primary address.
241 242 Current secondary address.
243 244 Pointer to start of current tape buffer lo; hi.
245 - Current screen line #.
246 - Data temporary for 1/0.
247 248 Pointer to start loc for O.S. lo; hi.
249 250 Pointer to current file name lo; hi.
251 254 Unused.
255 - Overflow byte that BASIC uses when doing FAC to
ASCII conversions.
Page 1

62 byte on bottom are used for érror correction in tape reads. Also, buffer for ASCIl when BASIC is
expanding the FAC into a printable number. The rest of page 1is used for storage of BASIC GOSUB and
for NEXT context and hardware stack for the machine.

A-3

PET PAGE TWO MEMORY MAP

FROM TO DESCRIPTION
512 514 24-hour clock in 1/60 sec.
517 518 Correction factor for clock LSB; MSB.
519 520 Interrupt driver flag for cassette #1. switches; #2 switches.
523 - Flag# means verify not load into memmory.
524 - /O status byte.
525 - Index into keystroke buffer.
526 - Flag to indicate reverse-field on.
527 536 Interrupt driven key stroke buffer.
537 538 IRQ RAM VECTOR lo; hi.
539 540 BRK instruction RAM VECTOR lo; hi.
549 - Count down to flip cursor.

551 - Flag for cursor on/off.

553 577 Table of LSB of start addresses of video dislay lines (25).
578 587 Table of logic addresses.

588 597 Table of primary addresses.

598 609 Table of secondary addresses.

610 - Index into LA, FA, SA tables.

611 - Default input device #.

612 - Default output device #.

613 - Computation of parity on cassette write.

621 - Count of redundant tape blocks.

624 - Count down synchronization or cassette write.

625 626 Index next character infout tape buffer #1; #2.

627 - Countdown synchronization on cassette read.

628 - Flag to indicate bit/byte tape error.

629 - Flag to indicate tape routine reading shorts.

630 631 Index to addresses to correct on tape read pass 1; pass 2.
632 - Flag for cassette read-tells current function--countdown, read, etc.
633 - Count of seconds of shorts to write before data.

634 825 Buffer for cassette #1 (192 bytes).

826 1017 Buffer for cassette #2 (192 bytes).

1018 1023 Unused.

A-4

VARIABLE ALLOCATION

Space is allocated for variables only as they are encountered. It is not possibie to allocate an array on
the basis of 2single elements, hence the reason to execute DIM statement before array references.
Seven bytes are allocated for each simple variable whether it is a string, number, or user defined

function.

The first two bytes give the name of the variable:

byte 1 byte2
INTEGER firstchr + Second chr + 128
128 or 128
FLOATING first chr second chr
orQ
STRING first chr secondchr + 128
or 128

The last five bytes give the value of avariable, or a descriptor to the rest of the data:

INTEGER
actual value

256 * HI LO 0 0 0

FLOATING . , .
actual valuein binary floating point
STRING pointer
chr
count LO HI 0 0

The simple string variable points to alocation in high memory, where the actual characters are stored.

Examples of declaration and storage

15%=90

201 181 0 9 0 0 O
C$ =“HELLO”

67 128 5 . . 0

A-5

Locations 124 and 125 contain the first address of memory where a simple variable name will be
found.By incrementig the address by 7 each time the ext simple variable name in the table is
encountered.The end of the variables is defined-by the address in 126 and 127.

Locations 126 and 127 also define the start of array storage. The first two bytes of array descriptors
arethe same as simple variables but the next five bytes are special as follows:

byte 3 byte 4 byte 5 byte 6 byte7
VECTOR 7 + (size + 1)*
ARRAYS (dim)*A 0 1 0 size +1

where A = 2forinteger, = 3forstring,or = 5 for floating.

By incrementing the search address by the current byte #3of the descriptor each time, the next array
variable is reached. Locations 128 and 129 contain the ending address of this table.

BASICTEXT
(124,125)
simple variable pointers involved in BASIC

storage vaiable storage.

(126,127)
array variable
storage
Y
(128,129)
high
memory

A-6

Because the variables are divided in storage between arrays and simple variables insertion of an
additional simple variable is a bit more complicated once an array has been defined. First, the entire array
storage area must be block moved upward by seven bytes and the pointers adjusted upward + 7.

Finally, the simple variable can be inserted at the end of simple variable storage.

If large arrays are defined and initialized first before simple variables are
assigned, much execution time can be lost moving the arrays each time a
simple variabie is defined. The best strategy to followin this case is to
assign a value to ail known simple variables before assigning arrays.

This will optimize execution speed.

Functions of NEW and CLR on data pointer:

CLR
String pointer equated to top of memory data pointer to
start of text — 1endof array table to start of variables end

of simple variables to start of variables.

NEW
String pointer equated to top of memory data pointerto
start oftext — 1 end of array tableto start oftext + 3
end of simple variables to start of text + start of variables

to start oftext + 3.

A-7

256 * PEEK(
+ PEEK(

at initialization

1024

typical program

PRINCIPAL POINTERS INTO PET RAM

A-8

123 145 125 127 129 131 133
122 144 124 126 128 130 132
@ o @ o o @ o]
® 2 D 2 a 2 ©
o @ o 14 =4 o S
5 5 5] : 2 :
=3 3 3, o £ = 3
@ = =X - « 2
= g o© o <
@ (7] =3
m/ T
/ / \
v 8192
000
1025 1028
y vV \L Y v A
BASIC
statements variables arrays strings
1025 1092 1113 1175 8184

HOW BASIC STATEMENTS ARE STORED

1024 1025 1027 1029
0 Link Line # compressed BASIC text 0 \
end of
statement
is flagged
/ by zero byte
Link Line # compressed BASIC text 0
\
0j 0

end of text is
stored as zero
link bytes

A-9

NOTES

Appendix B.

BASIC STATEMENTS

DEF FN

DIM

END
FOR-TO-STEP-NEXT
GET
GOSUB-RETURN
GOTO

IF-THEN

INPUT

LET
ON-(GOSUB-GOTO)
POKE-PEEK

PRINT
READ-DATA-RESTORE
REM

STOP-CONT

WAIT

In the following description of statements, an argument of V or W denotes a numeric variable. X denotes
a numeric expression, X$ denotes a string expression and an | or J denotes an expression that is
truncated to an integer begore the statement is executed. Truncation means that any fractional part of
the number is lost, e.g. 3.9 becomes 3, 4.01 becomes 4.

DEF 100 DEF FNA (V)=VIB+C The user can define functions like the
built-in functions (SQR, SGN, ABS, etc)
through the use of the DEF statement. The
name of the function is ‘FN’ followed by
any legal variable name, for example: FNX,
FNJ7, FNKO, FNR2. User-furnished
functions are restructed to one line.

A function may be defined to be any
expression, but may only have one
argument. In the example, B & C are
variables that are used in the program.
Executing the DEF statement defines the
function. User-defined functions can be
redefined by executing another DEF
statement for the same function.
User-defined string functions are not
allowed. ‘V’ is called the dummy variabie.

B-1

110 Z=FNA(3)

200 DEF FNA(V)=FNB(V)

DIM 113 DIM A(3),B(10)

114 DIM R3(5,5), D$(2,2,2)

115 DIM Q1(N),Z(2*1)

117 A(8) =4
END 999 END
FOR 300 FOR V=1TO 9.3 STEP .6

310 FORV=1T0 9.3

B-2

Execution of this statement following the
above would cause Z to be set to 3/B+C,
but the value of V would be unchanged.

A function definition may be recursive.

A DEF statement may be written in terms
of other functions, however.

Allocates space for matrices. All matrix
examples are set to zero by the DIM
statement.

Matrices can have more than one
dimension. Up to 255 elements

Matrices can be dimensioned dynamically
during program execution. If a matrix is
not explicitly dimensioned with a DIM
statement, it is assumed to have as many
subscripts as implied in its first use and
whose subscripts may range from 0to 10
(eleven elements).

If this statement was encountered before
a DIM statement for A was found in the
program, it would be as if a DIM A(10) had
been executed previous to the execution of
line 117. All subscripts start at zero (0},
which means that DIM x (100) really
allocates 101 matrix elements.

Terminates program execution without
printing a BREAK message. (See STOP)
CONT after an END statement causes
execution to resume at the statement

after the END statement. END can be used
anywhere in the program, and is optional.
V is set equal to the value of the
expression following the equal sign, in this
case 1. This value is called the initial value.
Then the statements between FOR and
NEXT are executed. The final value is the
value of the expression following the TO.
The step is the value for the expression
following STEP. When the NEXT

statement is encountered, the step is
added to the variable.

If no STEP was specified, it is assumed to
be one. If the step is positive and the new
value of the variable is < =to the final
value (9.3 in this example), or the step value

GET

GOsuB

315 FOR V=10"N TO 3.4/Q STEP
SQR(R)

340 NEXT V
345 NEXT

350 NEXT v,W

GET A
GET A$

10 GET A$: 1FA$ =" "THEN 10

10 GOSUB 910

B-3

is negative and the new value of the
variable is =>the final value, then the first
statement following the FOR statement is
executed. Otherwise, the statement
following the NEXT statement is executed.
All FOR loops execute the statements
between the FOR and the NEXT at least
once, even in the case like FORV=1TO 0.

Note that expressions (formulas) may be
used for the initial, final and step values in
the FOR loop. The variables of the
expressions are computed only once,
before the body of the FOR...NEXT loop to
terminate. The statement between the FOR
and its corresponding NEXT in both
example above (310) would be

executed 9 times.

Marks the end of a FOR loop.

If no variable is given, matches the most
recent FOR loop.

A single NEXT may be used to match
multipie FOR statements. Equivalent to
NEXT V: NEXT W. Specification the former
way saves 1 byte of BASIC text storage.
Works like INPUT or INPUT# on a single
character basis. Unlike INPUT though, this
function scans the keyboard and does not
wait for carriage return to be pressed. If no
key has been pressed, A$ =" "(null string)
and A =0 after executing this statement.
This example stays in a loop until a key
has been

pressed.

Branches to the specified statement (910)
until a RETURN is encountered; when a
branch is then made to the statement after
the GOSUB. GOSUB nesting is limited to
23 levels.

Subroutines line numbers are searched for
from the beginning of text. To increase
execution speed, define subroutines first
with low line numbers. Fewer digits in line
numbers will also save storage space.

50 RETURN Causes a subroutine to return to the
statement after the most recently executed
GOSUB.

GOTO 50 GOTO 100 Branches to the statement specified.
Keeping line numbers low wiil save space
on GOSUB statements.

IF...GOTO 32 IF x< =Y +23x4 GOTO 92 Equivalent to IF..THEN, except that IF...
GOTO must be followed by a line number,
while IF..THEN can be followed by either a
line number or another statement.

IF..THEN 15 IF x<0 THEN 5 Branches to specified statement if the
relation is True.
25 IF X=5THEN 50:Z2=A WARNING. The “Z =A” will never be

executed because if the relation is true,
BASIC will branch to line 50. If the relation
is a false, BASIC will proceed to the line
after line 25.

26 IF X<0 THEN PRINT “ERROR X NEGATIVE”: GOTO 350
In this example, if X is less than 0, the
PRINT statement will be executed and then
the GOTO statement will branch to line
350. If the X was 0 or positive, BASIC will
proceed to execute the lines after line 26.
Binary floating point representations of
decimal fractions may not alwys be exact.
sometimes a comparison will fail because
of this. In this case, compare the number to
a + range.

INPUT Request information character by character
until carriage return from the keyboard,
turning the characters into numbers or
strings of a maximum length of 79
characters.

3 INPUT V,W, W2 Requests data from the terminai (to be
typed in). Each value must be separated
from the preceeding value by a comma (,).
The last value typed should be followed by
a carriage return. A “?” is typed as a
prompt character. However, only constants
may be typed in as a response to an
INPUT statement, such as 4.5E-3 or “CAT".
If more data was requested in an INPUT
statement than was typed in, a “??” is
printed (if INPUT is from terminal) and the
rest of the data should be typed in. If more

" B-4

LET

ON...GOTO

ON...GOSUB

POKE

5 INPUT “VALUE";V

300 LET W=X
310 V=51

100 ON | GOTO 10,20,30,40

105 ON SGN (X) +2 GOTO
40,50,60

110 ON 1 GOSUB 50,60

357 POKE 1,J

B-5

data was typed in than requested, the extra
data will be ignored and a warning “EXTRA
IGNORED” will be printed when this
happens. String must be input in the same
format as they are specified in DATA
statements.

Optionally types a prompt string (“VALUE”)
before requesting data from the terminal.
Typing CONT after an INPUT command
has been interru'pted will cause execution
to resume at the INPUT statement.

An INPUT command is interrupted if a
carriage return is the only character
entered.

Assigns a value to a variable.

“LET"” is optional. The type of variable

(numeric or string) must be the same as the

evaluated expression.

Branches to the line indicated by the I'th

number after the GOTO.

That is :

If =1, THEN GOTO LINE 10

ifi1=2, THEN GOTO LINE 20

If =3, THEN GOTO LINE 30

if =4, THEN GOTO LINE 40.

If 1=0or I attempts to select a nonexistent

line (> =) in this case, the statement after

the ON statement is executed. However,

if 1is <255 or >0, an “ILLEGAL QUANTITY”

error message will result. As many line

numbers as will fit on a 79-byte line can

follow an ON...GOTO.

This statement will branch to line 40 if the

expression X.is less than zero, to line 50 if

it equals zero, and to line 60 if it is equal
to one.

Identical to “ON...GOTO”, except that a

subroutine called (GOSUB), is executed

instead of a GOTO. RETURN from the

GOSUB branches to the statement after the

ON...GOSUB.

The POKE statement stores the byte

specified by its second argument (J) into

the location given by its first argument (I).

PEEK

PRINT

READ

10A = PEEK()

360 PRINT X,Y,Z

370 PRINT

380 PRINT X,Y

390 PRINT “VALUE” IS";A
400 PRINT A2,B,

410 PRINT MID$(AS,2);

490 READ VW

B-6

The byte to be stored must be =>0 and

< =255, or an “ILLEGAL QUANTITY” error
will occur. The address () must be =>0
and < = 65535, or an “ILLEGAL QUANTITY”
error will result. POKE works only on RAM
and /0 POKEing. Certain locations will
disturb normal PET operation unless reset.
It is not possible to POKE the PEEK of a
location into a location inPET ROM.

PEEK is a function of an address and
returns a byte vaiue contained in that
location. BASIC cannot be PEEKed and
PEEK of locations $C000 to $E1D9 yields a
value of zero.

Sends the data to PET TV display. BASIC
software calls a subroutine in the system
software and loads the character in the
accumulator.

Prints the value of expressions on the
terminal. If the list of values to be printed
out does not end with a comma (,) or a
semicolon (), then a carriage return/line
feed is executed after all the values have
been printed. Strings enclosed in quotes
(") may also be printed. If a semicolon
separates two expressions in the list,
their values are printed nest to each other.
If a comma appears after an expression in
the list, then spaces are printed until the
carriage is at the beginning of the next N
column field (until the carriage is at column
N,2N,3N,4N...). If there is no list of
expressions to be printed, then a carriage
return is executed.

String expressions may be printed. A
semicolon is not neeeded between string
expressions such as PRINT AB “HELLO”
that are to be concatenated.

Reads data into specified variable from a
DATA statement. The first piece of data
read will be the first piece of data listed in
the first data statement of the program.
The second piece of data read will be the
second piece listed in the first DATA
statement, and so on. When all of the data

DATA

RESTORE

REM

STOP

CONT

WAIT

10DATA1,3, - 1E3,.04

20 DATA “CBM,INC”
30 DATA PET, “2001”

510 RESTORE

500 REM NOW SET V=0

S505REM SET V=0:V=0

506 V=0: REM SET V=0
9000 STOP

WAIT 1,J,K

B-7

have been read from the first DATA
statement, the next piece of data to be
read witl be the first piece listed in the
second DATA statement of the program.
Attempting to read more data then there is
in all the DATA statements in a program
will cause an “OUT OF DATA” error. The
line number given in the “SYNTAX ERROR”
will refer to the line number where the error
actually is located.

Specifies data, read from left to right.
Information appears in data statements in
the same order as it will be read in the
program.

Strings may be read from DATA
statements. If you want the string to
contain a colon (:) or commas (), or leading
blanks, you must enclose the string in
double quotes. It is impossible to have a
double quote within string data or a string
literal. (“ “ANYTHING” ") is illegal.

Allows the rereading of DATA statements.
After a RESTORE, the next piece of data
read will be the first piece listed in the
first DATA statement, and so on as in a
normal READ operation.

Allows the programmer to put comments
in his program. REM statements are not
executed, but can be branched to. A REM
statement is terminated by end of line, but
not by a *;”.

In this case, the V =0 will never be
executed by BASIC.

In this case V =0 will be executed.

Causes a program to stop execution and to
enter command mode. Prints BREAK IN
LINE 9000 (as per this example). CONT
after a STOP branches to the statement
following the STOP.

A command that can be executed only in
direct mode. Resumes program execution
after STOP, END, or use of STOP key.

A program cannot be resumed after error
condition, editing, CLR, or NEW.

This statement reads the status of memory

B-8

jocation |, exclusive OR’s K with status,
then AND’s the result with J untill a non-
sero result is obtained. Execution of the
program continues at the statement
foliowing the WAIT.

If the WAIT statement only has two
arguments, K is assumed to be zero. If you
are waiting for a bit to become zero, there
should be a one in the corresponding
position of K. 0< = 1< =65536 J,K must be
< =0 and > =255.

The STOP key cannot interrupt a WAIT.

Appendix C

CLR
LIST
LOAD
NEW
RUN
SAVE
VERIFY

BASIC COMMANDS

A command is usuaily given after BASIC has typed READY. This is called the “Command Level”.
Commands may be used as program statements. Certain commands, such as LIST and NEW will.

terminate program execution when they finish.

CLR
LIST LIST X
LIST or LIST-
LIST X-
LIST -X
LIST Y-X
LOAD LOAD

LOAD “HURKLE”

LOAD “HURKLE", 2
10 LOAD “HURKLE”

C-1

Deletes all stored references to variables,
arrays, functions, GOSUB and FOR-NEXT
context.

Lists line “X’ if there is one.

Lists the entire program.

Lists all lines in a program with a line
number equal to, or greater than, “X".
Lists all of the lines in a program

with a line number less than, or

equal to, “X".

Lists all of the lines within a program with
line numbers equal to, or greater than, “Y”,
and less than or equal to “X".

If LIST is used as a program statement, the
program will terminate after it is executed.
Load first program found on cassette #1
into memory.

Search for named file on cassette #1 and
then load it into memory.

Same as previous, except from device #2.
When LOAD is specified as a program
statement, execution of the current
program in memory stops at this point.

A normal load of program proceeds. The
new program begins execution from its
lowest line number. Variables and their
values are passed from the load to the new
program. Strings and function definitions
cannot be relied upon because BASIC
maintains pointers into the old text

NEW
RUN RUN
RUN 200
SAVE SAVE
SAVE “HURKLE”
SAVE “HURKLE"”, 2
SAVE “HURKLE”, 2,1
VERIFY VERIFY “HURKLE”

C-2

where they used to be. Strings can be
forced to exist in permanent string
variable storage by performing an operation
on them prior to LOAD, e.g. A =A% +" "
WARNING: On an overlay LOAD, the
overlaying program must have a text
storage requirement less than or equal to
the previous program. If this is not true,
then the variables will be overwritten
because they are stored immediately after
text in memory.

Deletes current program and all variables.
Starts execution of the program currently
in memory at the lowest numbered
statementment. RUN deletes all variables
(Iike CLR) and restores DATA. If you have
stopped your program and wish to continue
execution at some point in the program,
use a direct GOTO statement to start
execution of your program at the desired
line.

Optionally starts RUN at the specified line
number.

Save BASIC text on cassette #1.

Save and name the file on cassette #1.
Save on 2nd cassette unit.

Save and write end of tape block.

Same parameters as LOAD. Compares
contents of memory with file and reports
success/failure of compare.

Appendix D

EXPRESSIONS AND OPERATORS

RELATIONAL OPERATORS

equal

less than
greater than
L.E.

G.E.

<3 not equal

VAV A
I

£

BOOLEAN OPERATORS

AND
OR
NOT

ARITHMETIC OPERATORS

+ add

- subtract
multiply

/ divide

* exponentiation
— (negation)

STRING OPERATOR

+ (concatenation)

D-1

ARITHMETIC OPERATORS

SYMBOL SAMPLE STATEMENT PURPOSE/USE
= A =100 Assigns a value to a variable,
LETZ=25 the LET is optional.
- B=-A Negation. Note that 0 — A js subtraction,
while — A is negation.
t 130 PRINT Xt3 Exponentation (equal to X*X*X

in the sample statement). 010=1. 0to any
other power = 0.AtB, with A negative and
B not an integer gives an FC error.

* 140 X=R*(B*D) Multiplication.
/ 150 PRINT x/1.3 Division.

+ 160.Z=R+T+Q Addition.

- 170 J =100 -1 Subtraction.

RELATIONAL OPERATORS

Relational operators can be used as part of any expression.

Relational operator expressions will always have a value of True (— 1) or a value of False (0).
Therefore, (5=4)=0, (6=5)= -1, etc.

The THEN clause of an IF statement is executed whenever the formula after the IF is not equal to 0. That
is to say, IF X THEN...is equivalent to IF X< > 0 THEN....

SYMBOL SAMPLE STATEMENT PURPOSE/USE

= 10 IF A=15 THEN 40 Expression Equals Expression.

<> 70IF A<>0THEN 5 Expression Does Not Equal Expression.

> 30 IF B >100 THEN 8 Expression Greater Than Expression.

< 160 IF B<2 THEN 10 Expression Less Than Expression.

<=, =< 180 IF 100< =B+ C THEN 10 Expression Less Than Or Equal To
Expression.

>=,=> 190 IF @ > =R THEN 50 Expression Greater Than Or Equal To
Expression.

BOOLEAN OPERATORS

AND 2IF A5 AND B<2 THEN 7 If expression 1 (A <5) AND expression 2
(B <2) are both true, then branch to line 7.
OR IFA<1 ORB<2THEN 2 If either expression 1 (A <1) OR expression
2 (B<2)is true, then branch to line 2.
NOT IF NOT Q3 THEN 4 If expression “NOT Q3" is true (because

Q3 is false), then branch to line 4.
NOT —1=0 (NOT true =false).
AND, OR and NOT can be used for bit manipulation, and for performing boolean operations.
These three operators convert their arguments to sixteen bit, signed two’s, compliement integers in the

D-2

range —32768to +32767. They then perform the specified logical operation on them and return a resuit
within the same range. If the arguments are not in this range, an ?ILLEGAL QUANTITY ERROR results.
The operations are performed in bitwise fashion, this means that each bit of the result is obtained by

examining the bit in the same position for each argument.
The following truth table shows the logical relationship between bits:

OPERATOR ARG. 1 ARG. 2 RESULT
AND 1 1 1
0 1 0
1 0 0
0 0 0
OR 1 1 1
1 0 1
0 1 1
0 0 0
NOT 1 0
0 1
EXAMPLES OF BOOLEAN EXPRESSIONS
63 AND 16=16 Since 63 equals binary 111111 and 16 equals binary 10000, the result of the AND
is binary 10000 or 16.
15 AND 14 =14 15 equals binary 1111 and 14 equals binary 1110, so 15 and 14 equals binary 1110
or 14
—1AND 8=8 -1 equals binary 1111111111111111 and 8 equals binary 1000, so the result is
binary 1000 or 8 decimal.
4 AND 2=0 4 equals binary 100 and 2 equals binary 10, so the result is binary 0 because none
of the bits in either argument match to give a 1 bit in the result.
10 0R 10=10 Binary 1010 OR’d with binary 1010, or 10 decimal.
-10R ~-2= -1 Binary 1111111111111111 (- 1) OR’d with binary 1111111111111110 (- 2) equals
binary 1111111111111111, or ~ 1.
NOT 0= -1 The bit complement of binary 0 to 16 places is sixteen ones (1111111111111111)
or —1. Also NOT —-1=0.
NOT X NOT X is equal to —(X+1). This is because to form the sixteen bit two’s
complement of the binary, you take the bit (one’s) complement and add one.
NOT1=-2 The sixteen bit complement of 1is 1111111111111110, which is equal to —(1+1)

or —2.

D-3

RULES FOR EVALUATING EXPRESSIONS

Rules for Evaluating Expressions:

1. Operations of higher precedence are performed before operations of lower precedence. This means the
multiplications and divisions are performed before additions and subtracions. As an example,

2+10/5 equals 4, not 2.4. When operations of equal precedence are found in a formula, the left-hand one
is executed first: 6 —-3+5=8, not —2.

2. The order in which operations are performed can always be specified explicitly through the use of
parentheses. For instance, to add 5 to 3 and then divide that by 4, we would use (5 + 3)/4, which eqals 2.
If, instead, we had used 5+ 3/4, we would get 5.75 as a result (5 plus 3/4).

The precedence of operators used in evaluating expressions is as follows, in order beginning with the
highest precedence: (Note: Operators listed on the same line have the same precedence).

1) FORMULAS ENCLOSED IN PARENTHESIS ARE ALWAYS EVALUATED FIRST

2yt EXPONENTATION
3) NEGATION — X WHERE X MAY BE A FORMULA
4

) MULTIPLICATION AND DIVISION
+ - ADDITION AND SUBTRACTION
RELATIONAL OPERATORS: = EQUAL
<> NOT EQUAL
(equal precedence < LESS THAN
for all six). > GREATER THAN
<= LESS THAN OR EQUAL
> = GREATER THAN OR EQUAL

(&)}

)
)
)
)
)

6

7) NOT LOGICAL AND BITWISE “NOT” LIKE NEGATION, NOT TAKES ONLY THE FORMULA TO
ITS RIGHT AS AN ARGUMENT

8) AND LOGICAL AND BITWISE “AND”

9) OR LOGICAL AND BITWISE “OR”

D-4

Appendix E

SPACE HINTS

In order to make your program smaller and save space, the following hints may be useful.

1) Use multiple statements per line. There is a small amount of overhead. (5 bytes) associated with each
line in the program. Two of these five bytes contain the line number of the line in binary. This means that
no matter how many digits you have in your line number (minimum line number is 0, maximum is 63999), it
takes the same number of bytes. Putting as many statements as possible in a line will cut down on the
number of bytes used by your program.

2) Delete all unnecessary spaces from your program. For instance:
10 PRINT X, Y, Z
uses three more bytes than

10 PRINTX,Y,Z
Note: All spaces between the line number and the first non-blank character are ignored.

3) Delete all REM statements. Each REM statement uses at least one byte plus the number of bytes in the
text. For instance, the statement 130 REM THIS IS A COMMENT uses up 24 bytes of memory.

In the statement 140 X = X + Y:REM UPDATE SUM, the REM uses 14 bytes of memory including the colon
before the REM.

4) Use variables instead of constants. Suppose you use the constant 1.02369 ten times in your program.
If you insert a statement

10Q =1.02369
in the program, and use Q instead of 1.02369 each time it is needed, you will save 40 bytes. This will also
result in a speed improvement.

5) A program need not end with an END; so, an END statement at the end of a program may be deleted.

6) Re-use the same variables. If you have a variable T which is used to hold a temporary result in one part
of the program and you need a temporary variable later in your program, use it again. Or, if you are asking
the terminal user to give a YES or NO answer to two different questions at two different times during the
execution of the program, use the same temporary variable A$ to store the reply.

7) Use GOSUB’s to execute sections of program statemnts that perform identical actions.

8) Use the zero elements of matrices; for instance, A(O), B(O,X)

SPEED HINTS
The hints below should improve the execution time of your BASIC program. Note that some of these hints
are the same as those used to decrease the space used by your programs. This means that in many cases
you can increase the efficiency of both the speed and size of your programs at the same time.

1) Delete all unnecessary spaces and REM’s from the program. This may cause a small decrease in
execution time because BASIC would otherwise have to ignore or skip over spaces and REM statements.
2) THIS IS PROBABLY THE MOST IMPORTANT SPEED HINT BY A FACTOR OF 10. Use variables instead
of constants. it takes more time to convert a constant to its floating point representation than it does to
fetch the value of a simple or matrix variable. This is especially important within FOR...NEXT loops or
other code that is executed repeatedly.

E-1

3) Order your definitions of variables carefully. Variables which are encountered first during the execution
of a BASIC program are allocated at the start of the variable table. This means that a statement such as
5A=0:B=A:C=A, will place A first, B second, and C third in the symbol table (assuming line 5 is the
first statement executed in the program). Later in the program, when BASIC finds a reference to the
variable A, it will search only one entry in the symbol table to find A, two entries to find B and three entries
to find C, etc.

4) Use NEXT statements without the index variable. NEXT is somewhat faster than NEXT | because no
check is made to see if the variable specified in the NEXT is the same variable in the most recent FOR
statement.

E-2

Appendix F

MAIN LOGIC ASSEMBLY PARTS CROSS REFERENCE

REF. DES.
C1,C2,C14
C3

C4
C5,C11,C12,C13
Cc6

C7-C10
C15-C49
CR1,CR2,CR3
DS1

J5

J7

J8

Q1,Q4

Q2,Q5

Q3,Q6

R1,R4
R2,R6,R12,R13,R14
R18-R25
R3,R5,R26-R46
R7,R8,R9

R10

R11

R15,R16

R17
UA1,UB5,UC9
UA2

UA2

UAS
UA7,UA8,UA9
UB1,UE8,UE9
uB2

UB3,UB4,UG5,UG6,
UH8,UH9

UB6,UC5,UuC7,UC8,UD5

UB8,UG8
ucC1
uc2,uD8,UG3

UC3,UC4,U11-U18
uJ1,uJ8

DESCRIPTION
.O1MF 100V Ceramic
82 pF 500V Ceramic
10pF 500V Ceramic
1.0MF 25V Tantalum
.1MF 50V Ceramic
47MF 16V Electrolytic
.1MF 10V Ceramic
IN5402 3A/200V

LED Indicator

20 Pin Header (Molex)
7 Pin Header (Molex)
5 Pin Header (Molex)
TiP 29

2N 4401

2N 3904

1.5K 1/4W 5%

10K 1/4W 5%

10K 1/4W 57

1K 1/4W 5%

470 1/4W 5%

2.4K 1/4W 5%

5.1K 1/4W 5%

IM 1/4W 5%

3.3K 1/4W 5%
74L.S93 Counter

6540-010 MOS Char. Gen.

2316B-08 Char Gen.
6522 VIA

MC 3446 Interface Bus
74LS20 Nand Gate
741.5165 Shift Reg.
74L.S244 Buftfer

7415107 Flip-Flop

6520 PIA

74L.S74 Flip-Flop
74LS00 Nand Gate
6550 RAM

F-1

PART NO.
900010-38
900010-40
900010-35
900402-13
900010-20
900100-33
900010-39
900753-01
900701-01
903307-02
903307-02
903302-02
902653-01
902652-01
902658-01
901550-69
901550-20
901550-20
901550-01
901550-58
901550-85
901550-03
901550-84
901550-02
901521-07
901439-08
901447-08
901437-01
901524-01
901521-04
9015621-12
901521-13

901521-08

901436-01
901521-06
901521-01
901438-01

UC3,uC4,U11-U18

uJdL,uJs
UC6,UE2
uD2,UD3,uD4
ubD6,uUD7
UD9Y,UE5
UDE9
UE3,UE4
UE6

UF3

UG2

UG4

UG9

UH1

UH1

UH2

UH2

UH3

UH3

UH4

UH4

UH5

UHS

UH6

UH6

UH7

UH7
UA2,UH1-UH7
UA2,UH1-UH7

UA5,UB8,UF3,UG8
UC3,uC4,uJ1-Ud8,U11-U18

2114, RAM

74LS08

74L.S157 Data Sel

74177 Counter
741.504 Hex Inv
LM555 Timer

7417 Hex Buffer

74100 Latch
6502 MPU

7415154 Decoder
741.S21 And Gate

7415145
6540-011 ROM
2316B-01 ROM
6540-013 ROM
2316B-03 ROM
6540-015 ROM
2316-B-05 ROM
6540-016 ROM
2316B-06 ROM
6540-012 ROM
2316B-02 ROM
6540-014 ROM
2316B-04 ROM
6540-018 ROM
2316B-07 ROM
Socket28 PIN
Socket 24PIN
Socket 40PIN
Socket 22PIN

F-2

901453-01

901521-03
901521-11
901522-03
901521-02
901523-01
901522-01
901522-02
901435-01
901521-10
901521-05
901521-09
901439-01
901447-01
901439-02
901447-03
901439-03
901447-05
901439-04
901447-06
901439-05
901447-02
901439-06
901446-04
901439-07
901446-07
904153-05
904153-04
904153-06
904153-03

Appendix G

SUGG ESTED READ'NG (USA produced)

Entering BASIC. J.Sack and J. Meadows. Science Research Associates,1973
BASIC:A Computer Programming Language. C. Pegels, Holden-Day,inc. 1973

BASIC Programming. J. Kemeny and T. Kurtz, Peoples Computer Co., 1010 Doyle(P.O.Box 3100),
Menlo Park, Ca 94025, 1967

BASIC. Albrecht, Finkle and Brown. Peoples Computer Co., 1010 Doyle(P.O.Box 3100), Menlo Park,
Ca 94025, 1973

A Guided Tour of Computer Programming in BASIC. T. Dwyer, Houghton Mifflin Co., 1973

Programming Time Shared Computer in BASIC. Eugene H. Barnett. Wiley-Interscience L/C 72-175789
($12.00)

Programming Language #2. Digital Equipment Corp., Maynard, MA 01754

101 BASIC Computer Games. Software Distribution Center. Digital Equipment Corp., Maynard,
MAO1754 ($7.50)

What to Do After You Hit Return. Peoples Computer Co., 1010 Doyle(P.O.Box 310),
Menlo Park, Ca 94025 ($6.95)

Basic BASIC. James S. Coan, Hyden Book Co., Rochelle Park, NJ

WORKBOOKS 1-5. T. I. S., P.O.Box 921, Los Almos, NM 87544

G-1

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

PET USER MANUAL
REQUEST FOR READER’S COMMENTS

The micro-computer system division attempts to provide documents that meet the needs of all
Commodore product users. This form lets you participate in the documentation process.

Please restrict your comments to the usability, accuracy, organization, and completeness of this
document.

1. Please specify by page any error you found in this manual.

2. Does the manual cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right manual for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this manual on a scale of 1to 10 with 10 being the best
rating.

Check here if you desire a written reply. l:l

Name
Address

Mail to the Commodore Address nearest to you (rear cover).

